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Abstract

Computing motion blur is a complex task for mod-
ern raytracers, usually temporal supersampling is
used to compute motion blur. However, this leads
to increased rendering time and high computational
complexity.

In the following we present an image based
technique which is based on the optical flow method
to achieve an approximated motion field in an image
sequence. In contrast to vector fields generated by
the raytracer itself, this enables us to also attain mo-
tion vectors for indirect movements, such as shad-
ows or caustics. For the optical flow computation
we use an extended Horn and Schunk model based
on the assumption that changes in the illumination
are ignored. Experiments to compare the results of
motion blurred pictures, computed by a raytracer
and the optical flow method, will be presented and
evaluated with respect to visual effects and runtime.

1 Introduction

Motion blur is an important perceptual cue for com-
puter generated images and animations. It can be
synthetically generated in animated sequences, €.g.
for stop motion animations, as shown e.g. in [1],[2].
Several commercial raytracing packages nowadays
introduce image based motion blur techniques to
overcome the high demands of accurately computed
motion blur. This accurate motion blur would re-
quire correct supersampling of all moving objects,
and thus usually significantly increases both the im-
plementation complexity of the raytracer, and the
required time to compute the image. A simpler
method is to compute several full images at differ-
ent points in time, and average these to model the
exposure time of a traditional film camera. While

Figure 1: Example of a motion blurred picture
computed with the combined optical flow method.

this is easy to implement, it increases the necessary
computations even more. Both approaches are also
problematic if there are a few very fast moving ob-
jects in an otherwise static scene.

It is usually relatively simple to obtain motion
vectors from direct ray hits in a raytracer. For light-
ing computations, a raytracer needs to compute the
intersection point with an object. Hence, instead of
only calculating the reflected color, motion infor-
mation from this point on the object surface can be
also computed, e.g. from the current rotation and
translation of the object. As an approximation of
the exposure time, the color of the object is drawn
as a blurred line instead of a single pixel in the im-
age. This also has the advantage, that the motion
blur can be computed as a post-processing effect af-
ter the actual image computation by the raytracer.

On the other hand, this technique is unable to
capture effect of indirect motion, such as the mov-
ing shadow of an object on the floor. While the ray-
tracer can detect the movement of the object, detect-
ing a moving shadow is significantly harder, espe-
cially if e.g. the light sources are moving as well.



A completely different approach to acquire the mo-
tion vector field for an image are optical flow al-
gorithms. These compute the motion for each in-
dividual pixel from two frames in an animation by
assuming that it does not change its intensity and
moves similar to its neighbors. It can easily handle
movements of objects or shadows, but has problems
e.g. when intensity values change significantly from
one frame to the other. Moreover, the optical flow
produces smoothed out velocity fields, thus object
boundaries are not accurately captured. Figure 1 is
an example of a motion blurred picture computed
with the combined optical flow method, another ex-
ample of motion blur computed purely with optical
flow can be found in Figure 9.

The approach that will be presented in the fol-
lowing thus not only computes the optical flow but
enhances these computations by motion data from
a raytracer where this information is reliantly avail-
able. In the following, the optical flow method, its
combination with the raytracer information and the
motion blur computation will be described in more
detail.

2 Optical flow model

Optical flow is the apparent motion due to variations
in the pattern of brightness. It provides us with a
dense approximate motion field u = (u,v) : @ —
R? out of two or more images in a video sequence
I(x,t) : @ x T — R, where I(x,t) describes the
grey value intensity for a point x = (z,y) in the
image domain Q C R?attimete T = [0..tmaz]-

The first optical flow model was introduced by
Horn and Schunk [3], has been studied intensively
and was extended in several ways (e.g. [4, 5, 6, 7,
8, 9]. In the following we restrict ourselves to this
model for simplicity.

The basic assumption for the optical flow model
by Horn and Schunk is that a moving object in the
image does not change its intensity values. This
means that we neglect changes in the illumination.
Mathematically this assumption can be written as
I(x,t) = I(x + dx,t + dt). Using Taylor expan-
sion we can linearize this equation and get the so
called optical flow constraint (OFC)

ILeu+Iyv+ 1 =VI-u+ 1 (1

with the image derivatives I.,I,,I; and u =
(u,v) = (dz/dt,dy/dt). The OFC cannot be ful-

filled exactly for most real world examples. In ad-
dition to that we only have one equation for com-
puting two unknowns at the moment, so we need
another constraint. We use here the assumption that
the variation of the velocity field is smooth, hence
allowing the computation of the unique motion field
via regularization theory ([10]). Altogether in a
variational formulation these two assumptions lead
to the following minimization problem

min F(u) :/(Vl-u+lt)2+a|Vu|2dQ 2)
u Q

in the image domain 2. The parameter « € Ry
controls the influence of the regularizer |Vul|?. If «
is constant we call this type of regularization homo-
geneous diffusion. As an extension of the simple
Horn and Schunk model we either allow a to de-
pend on the image derivatives and we call this kind
of regularization isotropic diffusion ([11], [12]) or
introduce a different data term to be more robust
against varying illumination ([13]). This extends
the simple model by adding a second data term in
Equation (2) which assumes constancy of the spa-
tial image gradient VI = (I, I,)”. The energy
function becomes

E(u) = [,(VI-u+I1;)* + o|Vu]?

taaVI(x+u) - VIx)Pde P

with a2 € Ry. However, our main purpose is to
blur the image according to the motion. Although
the optical flow solution can be improved by the ex-
tended model, we find that there is almost no differ-
ences between the two models (see Figure 9). Using
the variational calculus we find that a solution for
problem (2) has to fulfill the Euler-Lagrange equa-
tions

—aAu+ L;(I;u+Tyv+ 1) = 0
—aAv+ Iy(Iyu+Tyw+1,) = 0 inQ
% = 0 ondf2

“

with homogeneous Neumann boundary conditions.

In order to solve this system of PDEs we first

discretize it by using finite differences on the rect-

angular regular grid €2;, with mesh size h. For the

discrete image derivatives we use higher order finite
differences ([14]).

After the discretization one has to solve a sys-
tem of linear equations with sparse system matrix
(cf. [15]). This can be done efficiently by a multi-
grid method (cf. [16], [17], [15]). In our context



we use a pointwise block-Gauss Seidel smoother
and standard intergrid transfer operators (cf. [18],
[19]). In order to deal with the jumping coefficients
I.,I,,1; in (4) we apply Galerkin coarsening in-
stead of direct coarsening to construct the coarse
grid matrices.

3 Motion vector field computation

Figure 2 shows the comparison of two motion vec-
tor fields from the raytracer u, = (u,, v,) and from
optical flow uy = (uy,vs). The image domain
can be partitioned into Q = Q, U Q,., where Q,.
is the set of all points x € €, where data is avail-
able from the raytracer and therefore u,(x) # 0,
and Q \ 2, = Q,. We have evaluated two possi-
bilities to combine these two motion vector fields to
getu = (u,v).

Pixel wise comparison: A simple way is first
to compute the optical flow vector field and then
to separately check each pixel if there is a motion
vector u(x) # 0 at x € € from the raytracer. If
yes, we set u(x) = uy(x). If there is no informa-
tion from raytracer available, the optical flow data
is used. In other words we use

ifx € Q,
ifx e Q,

u,(x)

Introduce landmarks: The second method to
combine the two motion fields is to introduce the
information from the raytracer as additional con-
straints (landmarks) in the process of the optical
flow computation. That means we fix u(x) =
ur-(x) Vx € Q, when solving (4). One can think of
this as setting these values as Dirichlet conditions
in our PDE. Using a Gauss Seidel solver this can be
done easily, if we use multigrid we have to take care
of the proper treatment of the landmarks on coarser
grids. We do this by fixing all points to O on coarser
grids that interpolate to a landmark.

Figure 3 shows a comparison of the pixel wise
vector field combination, and the landmark vector
field computation. The visual differences are not
large, but the landmark vector field does not intro-
duce any discontinuities in the motion vector field
on the boundary between €2, and Q,.. These dis-
continuities can lead to visible artifacts, especially
at object boundaries. Hence, we will use the land-
mark algorithm in the following.

4 Calculation of motion blur

After the step of combination we have the complete
motion vector field. Now the calculation of the im-
age based motion blur will be applied. We approx-
imate the convolution of the pixel intensity with a
discrete number of steps along a line. Other meth-
ods would be to compute the duration each pixel re-
mains within the area of a pixel, as done in [1][20],
or the movement itself could be approximated by
high order curve. However, we have found that the
method explained below yields satisfactory results.

Let the motion vector of source pixel Ps(%,j)
with intensity I(¢,7) from one to the next frame
be the movement of this pixel P from the position
(%0, jo) in the first frame to the position (i, j») in
the second frame after a exposure time interval 67"
Dividing the time interval §7 into N equally long
subintervals ¢;...t,, we assume that the speed is
constant. Now a fraction I(z, j)/N of the intensity
is added for all pixels in the image that are crossed
by the movement through the image plane. Note
that IV can be chosen arbitrary according to the mo-
tion speed, but basic consideration is that N must
larger than the longest motion vector. In the exam-
ple of calculation shown by Figure 5 we have used
N = 15/u] .

Thus, the weight computations are similar to
those for the motion blur. It is furthermore nec-
essary to normalize the blurred intensities and re-
trieve the original colors of the source image after
blurring. In order to normalize the intensity, we
furthermore compute a weight for each image pixel
w(%, §), upon which the step fraction 1/N is added.
Thus after the computation of all final pixel val-
ues Py (i,7), its value is normalized by 1/w(s, j),
if w(, j) is larger than zero. If it is zero, this means
that no moving pixel has crossed this destination
pixel, and we set Py (4, j) = Ps(,7).

5 Results

The following section will discuss results for three
image sequences visually and by runtime. In the
following, the open-source raytracer Blender is
used to produce accurate motion blurred images as
a reference. Blender computes this by raytracing 8
images for each single frame of animation. In the
following, we will use the vector field computed by
the Blender raytracer as u,-.
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(a) Motion vector field from raytracer
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(b) Motion vector field from optical flow

Figure 2: Comparison of two motion vector fields. The original image is taken from Figure 7 and shows a

single moving object with a shadow on a floor plane.

Motion vector passing by the pixels (5,2),(4,3),(3,4),(2,5)
Grey(x,y)=(1X . + 4X @)/5
Greyxy)=0x @ + 4 x5
Grey(x,y)=(1 x. + 2 x@)/s

The grey value of each pixel equals the arithmetical average of
grey value of all points in all frames which falls in this point.

in pixel (5,2)
in pixels (4,3),(3,4)
in pixel (2,5)

Figure 5: Calculation of the blurred pixel intensi-
ties.

5.1 Visual effect comparison

To evaluate the visual appearance of the motion
blur calculation, we use the three image sequences
shown in Figure 7, 8 and 9. The second one uses
a simple vase model, with a moving camera. Thus
motion data is available throughout the image, and

no data from the optical flow is used. As can be seen
in Figure 8, the algorithm described in Section 4
yields results comparable to the reference motion
blur.

The image sequences in Figure 7 and 9 both
have a fast moving object, that casts a shadow onto
the floor plane below. Here it can be seen that the
combined motion blur computation captures both
the blur of the moving object, as well as that of the
moving shadow on the floor surface. In Figure 7
it can be seen that the static stars in the image can
also be affected by the blur from optical flow mo-
tion field. This, however, does usually not lead to
notable artifacts. Figure 9(c) is the blurred image
using the extended model (3) which is more robust
against varying illumination.

5.2 Runtime comparison

The runtime for the optical flow algorithm only de-
pends on the image size, while for the raytracer the
runtime strongly depends on the scene complexity.
For a sophisticated animation, the rendering for a
single frame can need huge amounts of time. Al-
though all of our test sequences are relatively sim-
ple, the accurate motion blur of the sequence from
Figure 7 still requires more than one minute to com-



(a) A single frame of the test sequence
parison

(b) Motion vector field for pixelwise com- (c) Motion vector field using landmarks

Figure 3: Comparison of two motion vector fields.

(a) Pixelwise comparison

SN

(b) Using landmarks

Figure 4: Zoom of the motion vector field comparison from Figure 3 (marked red rectangles).

pute. The test runs were performed with a Pentium
4 2.4GHz CPU with 512KB of cache.

The overall time to compute the motion blur
with the combined optical flow approach for Fig-
ure 7 with a resolution of 400 x 300 is 16,8 sec-
onds, 12,5 seconds of which are spent for produc-
ing the source image and the motion vector field
from the raytracer. 2,4 seconds are spent to compute
the motion vector field from optical flow. Figure 6
shows the runtime comparison for all test cases.
Our current implementation requires ca. 1,9 sec-
onds to compute the motion blur itself. Thus, the to-
tal time to compute the motion blurred picture with
our combined method is 4,3 seconds, independent
of the scene complexity.

6 Conclusion and Outlook

We have successfully combined the two vector
fields from raytracer and optical flow to compute the
motion blur in an image sequence. Its runtime only
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Figure 6: Runtime comparison for blurring single
frame.

depends on the image size, and is thus significantly
lower than approximating the motion blur with the
raytracer. Our combined optical flow approach on
the other hand requires only slightly more time than
a pure image based motion blur calculation, but en-
hances the visual appearance.

Future work will be to optimize the current im-
plementation, and use more advanced optical flow



models. For fast movements warping [21] could be
used to enhance the accuracy of the optical flow cal-
culation. The results could moreover be enhanced
by using render passes, a feature most current ray-
tracers support, to give finer control of the motion
blur for certain parts of an image.
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(a) Original image (b) Reference motion blur computed by (c) Motion blur computed with the ray-
raytracer tracer vector field and the algorithm

from Section 4

Figure 8: Motion blur for an animation with a moving camera.

(a) Original image (b) Reference motion blur computed by raytracer

(c) Motion blur computed with considering the varying (d) Negative example - wrong motion blur computed
illumination with pure optical flow data

Figure 9: Comparison of the motion blur for a single moving object with two shadows. The last picture
shows an example of a wrong motion blur computation with only the optical flow vector field.
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(a) Original image (b) Reference motion blur computed by (c) Motion blur computed with the ray-
raytracer tracer vector field and the algorithm
from Section 4

Figure 1: Motion blur for an animation with a moving camera.

(a) Original image (b) Reference motion blur computed by raytracer

(c) Motion blur computed with considering the varying (d) Negative example - wrong motion blur computed
illumination with pure optical flow data

Figure 2: Comparison of the motion blur for a single moving object with two shadows. The last picture
shows an example of a wrong motion blur computation with only the optical flow vector field.
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