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In the following, we will present an algorithm to perform adaptive free surface simulations
with the lattice Boltzmann method (LBM) on machines with shared and distributed memory
architectures. Performance results for different test cases and architectures will be given. The
algorithm for parallelization yields a high performance, and can be combined with the adaptive
LBM simulations. Moreover, the effects of the adaptive simulation on the parallel performance
will be evaluated.

1. Introduction

When a two phase flow involving a liquid and a gas, such as air and water, is simplified by
only simulating the liquid phase with appropriate boundary conditions, this is known as a free

surface flow. These flows a interesting for a variety of applications, from engineering and material
science to special effects in movies. Our fluid simulator to solve these free surface problems uses
the lattice Boltzmann method and a Volume-of-Fluid (VOF) model for the liquid-gas interface.
Together with a turbulence model, adaptive time steps and adaptive grids it can efficiently solve
complex free surface flows with a high stability. A central component is its ability to adaptively
coarsen the grid for large volumes of fluid, so that these can be computed on a coarser grid and
require less computations. The full algorithm is described in [7]. In the following, we will focus
on its paralellization and the resulting performance.

Figure 1. Example of an adaptive free surface simulation with the VOF LBM algorithm.
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Figure 2. Comparison of the normal grid compression, and the grid compression for OpenMP.
Instead of copying an updated cell to its diagonal neighbor, the cell is copied to a target cell in
two cells distance (along the y direction for this 2D example, along the z direction for an actual
3D implementation).

2. OpenMP Parallelization

OpenMP is a programming model for parallel shared-memory architectures, and has become
a commonly used standard for multi-platform development. An overview of the whole API is
given in, e.g., [1].

The main part of the computations of the solver (ca. 73%) need to be performed for the
computations of the finest grid. Thus, the parallelization aims to speed up this central loop over
the finest grid of the solver. A natural way to do this would be to let the OpenMP compiler
parallelize the outermost loop over the grid, usually the z direction. However, as we make use of
the grid compression technique [5], this would violate the data dependencies for a cell update.
With grid compression, the updated DFs of a cell at position (i, j, k) in the grid are written
to the position (i − 1, j − 1, k − 1). This only works for a linear update of all cells in the grid.
Instead, to use grid compression with OpenMP, the DFs of cell (i, j, k) are written back to the
position (i, j, k − 2), as shown in Figure 2. This allows the update of all cells of an xy plane in
arbitrary order. Note that this modified grid compression only requires slightly more memory
than the original version (a single line of cells along the z direction, assuming the same x and y
grid resolution).

Hence, the loop over the y component is parallelized, as shown in Figure 3. This is advan-
tageous over shortening the loops along the x direction, as cells on a line along the x axis lie
successively in memory. Long loops in this direction can thus fully exploit spatial coherence of
the data, and prefetching techniques of the CPU if available. After each update of a plane the
threads have to be synchronized before continuing with the next plane. This can be done with
the OpenMP barrier instruction. Afterwards, the cells of the next xy plane can again be updated
in any order. In the following a gravitational force along the z axis will be assumed. This usually
causes the fluid to spread in the xy plane, which justifies a domain partitioning along the x and
y axes.
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Figure 3. The OpenMP parallelization splits the y component of the loop over the grid.

OpenMP Performance Measurements

Performance measurements of the OpenMP parallelized solver can be seen in Figure 4. The
graphs show absolute time measurements for a fixed number of LB steps, as mega lattice site

updates per second (MLSUPS) measurements are not suitable for simulations with the adaptive
coarsening of [7]. For these measurements, a test case of a drop falling into a basin of fluid
was used. The left graph was measured on a 2.2GHz dual Opteron workstationA, with a grid
resolution of 3043. The graph to the right of Figure 4 was measured on a 2.2GHz quad Opteron
workstationB, using a resolution of 4803. For the dual nodes, as well as the quad nodes, the
CPUs are connected by HyperTransport links with a bandwidth of 6.4 GB/s. Each graph shows
timing measurements for different numbers of CPUs, and with or without the use of the adaptive
coarsening algorithm.

The results without the adaptive coarsening show the full effect of the parallelization, as in
this case almost 100% of the computational work is performed on the finest grid. It is apparent
that the speedup is directly proportional to the number of CPUs used in this case. The four
blue bars of the right graph from Figure 4 even show a speedup of 4.11 for four CPUs. This
can be explained with the architecture of the quad node – the simulation setup uses most of
the available memory of the machine, but each CPU has one fourth of the memory with a fast
local connection, while memory accesses to the remaining memory have to performed using the
HyperTransport interconnect. Thus, with four OpenMP threads the full memory bandwidth can
be used, while a single thread, solving the same problem, frequently has to access memory from
the other CPUs.

The timing results with adaptive coarsening show less evident speedups, as in this case only
roughly 70% of the overall runtime are affected by the parallelization. As expected, the runtime
for two CPUs is 65% of the runtime for a single CPU. The OpenMP parallelization thus yields
the full speedup for the finest grid. It can be seen in the right graph of Figure 4 that there is a

ACPU: 2 x AMD Opteron 248, 2.2 GHz, 1MB L2-cache; 4GB DDR333 RAM.
BCPU: 4 x AMD Opteron 848, 2.2 GHz, 1MB L2-cache; 16GB DDR333 RAM.
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Figure 4. Time measurements for the OpenMP version of the solver: the runs to the left were
measured on a dual Opteron workstation, while those to the right were measured on a work-
station with four Opteron CPUs. The blue bars represent runs without the adaptive coarsening
algorithm, while the orange bars use two coarse levels in addition to the finest one.

speedup factor of more than 15 between the version without adaptive coarsening running on a
single CPU and the version with adaptive grids running on four CPUs. To further parallelize the
adaptive coarsening algorithm, a parallelization of the grid reinitialization would be required,
which is complicated due to the complex dependencies of the flag checks.

3. MPI Parallelization

For the development of applications for distributed memory machines, the Message Passing

Interface (MPI) is the most widely used approach. In contrast to OpenMP, MPI requires more
low level work from a developer, as most of its functions only deal with the actual sending and
receiving of messages over the network. Details of the introductory and more advanced functions
of MPI can be found, e.g., in [2] and [3].

For the MPI parallelization the domain is split along the x axis, as shown in Figure 5. In
this figure two nodes are used, the domain is thus halved along the x axis, and a ghost layer is
added at the interface of the two halves. Before each actual LB step, the boundary planes are
exchanged via MPI, to assure valid boundary conditions for all nodes. As indicated in Figure 5,
the boundary layer contains the full information from a single plane of the neighboring node.
For a normal LB solver, this would be enough to perform a stream-collide-step. However, the
free surface handling can require changes in the neighborhoods of filled and emptied interface
cells from a previous step. All fluid cells in the layer next to the boundary layer thus have to
be validated again. If one of them has an empty cell as a neighboring node, it is converted to
an interface cell. This simple handling ensures a valid computation, but causes slight errors in
the mass conservation, as the converted cell might have received excess mass from the former
neighboring interface cell. We have found that this is unproblematic, especially for physically
based animations, as the error is small enough to be negligible. For engineering applications,
an additional transfer between the nodes could ensure a correct exchange of the excess mass,
similar to the algorithm proposed in [6,4]. The error in mass conservation is less than 1% for
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Figure 5. The MPI parallelization splits the x component of the loop over the grid.

1000 LB steps.
If this scheme is used in combination with the adaptively coarsened grids, it has to be ensured

that there is no coarsening of the ghost and transfer layers. Therefore, the transfer is only required
for the finest grid level. A coarsening of the ghost layers would require information from a wider
neighborhood of the cells, and result in the exchange of several layers near the node boundary,
in addition to the ghost layers of the different grid levels. As the bandwidth of the network is
a bottleneck, such an increase of the exchanged data would result in a reduced performance.
Hence, only the fine layers are connected with a ghost layer, and are treated similar to the free
surface or obstacle boundaries to prevent coarsening in this region. As the node boundary has
to be represented on the finest grid, this means that large volumes of fluid spanning across this
boundary can not be fully coarsened. This parallelization scheme thus modifies the actual layout
of the coarse and fine grids in comparison to the serial version of the solver. Further care has to
be taken an adaptive resizing of the time step. This is based on the maximum velocity in the
simulation, and requires the global maximum for all nodes to be computed.

4. MPI Performance Measurements and Discussion

To measure the performance of this MPI parallelized version of the solver, the test case is again
that of a drop falling into a basin of fluid. The timing measurements of Figure 6 were measured
on multiple quad Opteron nodesC. Details of these quad nodes can be found in Section 2. The
x axis of each graph shows the number of nodes used for the corresponding measurement. For
each node, the OpenMP parallelization of the previous section was used to execute four OpenMP
threads on each node. As the parallelization changes the adaptive coarsening, Figure 6 again
shows timing measurements for a fixed number of LB steps, instead of MLSUPS or MFLOPS
rates. The figure shows two graphs in each row: the graph to the left was measured on a grid
without adaptive coarsening, while the one to the right was measured from runs solving the same
problem with two levels of adaptive coarsening. The two rows show the effect of the overhead
due to MPI communication: the upper row shows results for a cubic domain of 4803, denoted
as test case Q in the following, while the lower row was measured with a wider channel and a
resolution of 704 · 352 · 352 (test case W). The grid resolution remains constant for any number

CThe nodes are connected by an InifiniBand interconnect with a bandwidth of 10GBit/s
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Figure 6. Time measurements for the MPI version of the solver running a problem with 4803

(test case Q) in the upper row, and for a problem with 704 · 352 · 352 (test case W) in the lower
row of graphs.

of CPUs involved (strong scaling). As the domain is equally split for the number of participating
MPI nodes, test case Q results in thinner slices with a larger amount of boundary layer cells to
be transferred. For 8 nodes and test case Q, this means that each node has a grid resolution of
60 · 480 · 480 with 4802 boundary cells to be exchanged. Splitting the domain of test case W, on
the other hand, results in slices of size 88 · 352 · 352 with 3522 boundary cells to be exchanged.

Overall, the graphs without adaptive coarsening show a speedup of around 1.8 for the strong
scaling. While the speedup for test case Q, from four to eight nodes, is around 1.62, it is 1.75
for test case W, due to the better ratio between computations and communication in the latter
case. This effect can also be seen for the graphs with adaptive coarsening (the right column of
Figure 6). While the curve flattens out for test case Q, there is a larger speedup for test case
W. For test case Q with adaptive coarsening, the speedup factor is ca. 1.3 − 1.35, while it is
between 1.45 and 1.55 for test case W. This lower speedup factor, in comparison to the test cases
with only a single fine grid, is caused by the increased overhead due to MPI communication,
compared to the amount of computations required for each LB step with the adaptive coarsening.
Moreover, the amount of coarsening that can be performed for each slice of the grid is reduced
with the increasing number of MPI processes. Practical test cases will, however, usually exhibit
a behavior that is a mixture of the four test cases of Figure 6. An example of a large scale test
case that was computed with four MPI processes, and required almost 40GB of memory, can be
seen in Figure 8.

To evaluate the overall performance of the solver, varying rectangular grid sizes without adap-
tive coarsening were used to simulate problems requiring the whole memory of all participating
nodes (weak scaling). While the MLSUPS rate for a single quad Opteron is 5.43 with a grid
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Figure 7. MLSUPS measurements for runs with varying grid resolutions (weak scaling) of test
case W and without adaptive coarsening. The dotted line represents the projected ideal speedup
according to the performance of a single quad node.

resolution of 704 · 352 · 352, eight quad nodes with a resolution of 1040 · 520 · 520 achieve a
performance of 37.3 MLSUPS, as shown in Figure 7. This represents a total speedup factor of
6.87 for the eight nodes.

5. Conclusions

We have demonstrated that the parallel algorithm presented here is suitable to perform ef-
ficient large scale computations. Both algorithms for OpenMP and MPI parallelization can be
combined to solve large problems on hybrid shared- and distributed-memory systems. However,
the algorithm does not yield the full performance when the only goal is to reduce the computa-
tional time for small problems with MPI. For large problems, the speedup will effectively depend
on the setup – for large volumes of fluid, the speedup can be around 1.3− 1.5, while fluids with
many interfaces and fine structures can almost yield the full speedup of a factor two for each
doubling of the CPUs or nodes used for the computation.

For dynamic flows, an interesting topic of future research will be the inclusion of algorithms
for load balancing, e.g., those described in [4]. The algorithm currently assumes an distribution
of fluid in the xy plane due to a gravity along the z direction. If this is not the case, the static
and equidistant domain partitioning along the x and y axes will not yield a high performance.
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