
Computing and Visualization in Science manuscript No.
DOI: 10.1007/s00791-008-0090-4

Nils Thürey · Ulrich Rüde

Stable free surface flows with the lattice Boltzmann method on
adaptively coarsened grids

Abstract In this paper we will present an algorithm to per-
form free surface flow simulations with the lattice Boltz-
mann method (LBM) on adaptive grids. This reduces the re-
quired computational time by more than a factor of three for
simulations with large volumes of fluid. To achieve this, the
simulation of large fluid regions is performed with coarser
grid resolutions. We have developed a set of rules to dynam-
ically adapt the coarse regions to the movement of the free
surface, while ensuring the consistency of all grids. Further-
more, the free surface treatment is combined with a Smagorin-
sky turbulence model and a technique for adaptive time steps
to ensure stable simulations. The method is validated by
comparing the position of the free surface with an uncoars-
ened simulation. It yields speedup factors of up to 3.85 for a
simulation with a resolution of 4803 cells and three coarser
grid levels, and thus enables efficient and stable simulations
of free surface flows, e.g. for highly detailed physically based
animations of fluids.

Keywords Free surface flows·Physically based animation·
Adaptive grids· Lattice Boltzmann method

1 Introduction

Free surface flows are important for a variety of applications,
such as the optimization of production processes for foam-
ing or casting [23], the research of bubble formation regimes
[4] or for applications in civil engineering such as certain
types of fluid structure interactions [27]. It is furthermore
of importance for physically based animations in computer
graphics, as a realistic fluid motion is hard to achieve without
relying on the equations that govern its motion. However, for
all simulation problems that appear in these cases it is still

N. Thürey, U. Rüde
University of Erlangen-Nuremberg
Computer Science 10 - System Simulation (LSS)
Cauerstr. 6, 91058 Erlangen, Germany
Tel.: +49-9131-8528691
Fax: +49-9131-8528928
E-mail: Nils.Thuerey@cs.fau.de, Ulrich.Ruede@cs.fau.de

Fig. 1 An example of a free surface simulation created with the
method described in this paper.

problematic to ensure stability and reasonable computation
times for complex flows.

Our fluid simulation uses thelattice Boltzmann method
(LBM) which can efficiently handle irregular fluid geome-
tries and topologies [11,34]. In contrast to solvers that di-
rectly compute solutions for the discretized Navier-Stokes
equations, the LBM is a form of cellular automaton. It re-
laxes the incompressibility criterion and thus does not re-
quire an additional step to compute the pressure with an it-
erative method such as a multi-grid solver [53,5], or a pres-
sure projection step [39,26]. Free surface fluids can also be
computed with an approach known as smoothed particle hy-
drodynamics [29,30], which does not require a fixed grid
and computes the fluid properties by computation kernels
defined on particle neighborhoods. The LBM, however, is
interesting due to the simple nature of the basic algorithm
and its high efficiency. These properties of the algorithm
make it possible to e.g. perform interactive fluid simulations
[51], or adapt it to other problems [10,6,50]. The algorithm
that we will present in this paper is based on the free surface
algorithm that was developed to simulate metal foams [43].
The approach is similar to volume-of-fluid methods, that are
often used in cases where mass conservation has to be guar-
anteed [17,41]. It furthermore does not require a simulation
of the gas phase, and thus saves significant amounts of work
for cases with large gas regions [20].

We will first give an overview of the basic algorithm and
its extensions. This will include the free surface boundary
treatment, a subgrid turbulence model, a method to resize the

2 Nils Thürey, Ulrich Rüde

Fig. 2 Apart from physically based animations, the simulation of metal
foaming processes is another possible application of the methods pre-
sented in this paper. To the left, an actual metal foam samplecan be
seen, while the right picture shows a foaming simulation performed
with LBM in cooperation with C. Körner (WTMErlangen).

time step and the standard approach to LBM simulations on
multiple grids. Afterwards we will discuss how to combine
these extensions and present our adaptive coarsening algo-
rithm. The goal of our approach is to efficiently compute the
motion of the free surface. Thus, our criterion for coarsening
is given by the distance to the free surface. As we consider
the algorithm to optimize a given simulation with a fine grid
resolution, we will in the following refer to it as acoars-
eningalgorithm, although it also requires the refinement of
regions, to account for the movement of the free surface.
In Section 4, the accuracy of our method will be validated
with an error metric that measures the difference of two free
surface positions. Afterwards we will present performance
measurements for two different simulation setups with vary-
ing grid resolutions. Moreover, visualizations of these simu-
lations with raytracing will be shown.

2 The Lattice Boltzmann Method

The LBM was derived from the lattice gas methods and can
be regarded as a first order explicit discretization of the Boltz-
mann equation discretized in phase space. Currently there
are two different ways of showing that this discretization
approximates theNavier-Stokes(NS) equations – either by
the method of Chapman-Enskog expansion from statistical
physics [9], or by direct discretization of the Boltzmann equa-
tion [15]. A more detailed overview of the basic algorithm
together with extensions and applications can be found e.g.
in [40] or in [54].

For the LBM the velocity space of the molecules or par-
ticles in the fluid is discretized. Hence, depending on the di-
mension and the number of velocity directions, there are dif-

Fig. 3 The most commonly used LBM models in two and three di-
mensions.

ferent models that can be used. We apply theD3Q19model
with 19 velocity vectors in three dimensions, as it was shown
to have good numerical properties. For two dimensions, the
D2Q9 model with nine velocities is commonly used. For
clarity the following illustrations will be based on this model,
while the simulations themselves are performed in three di-
mensions. The velocity vectorse1, ..e9 of the D2Q9 model,
ande1, ..e19 of the D3Q19 model are shown in Fig. 3. For
each velocity vector a particle distribution function (DF)is
stored. A DF fi represents an amount of fluid moving with
the velocityei . The velocities of the D3Q19 model are

e1 = (0,0,0)T ,

e2,..,7 = (±1,0,0)T ,(0,±1,0)T ,(0,0,±1)T ,

e8,..,11 = (±1,±1,0)T ,

e12,..,15 = (0,±1,±1)T and

e16,..,19 = (±1,0,±1)T . (1)

Thus there are particles not moving at all (f1), moving with
speed 1 (f2, .. f7) and moving with speed

√
2 (f8, .., f19). In

the following, a DF with subscript̃i will denote the value
from the reverse direction of a DF with subscripti, thuseĩ =
−ei . For simplicity, the size of a cell∆x and the length of
a time step∆ t both are normalized to 1 in lattice units. The
normalization procedure is explained below in more detail.

The basic LBM consists of two steps, the stream- and the
collide-step. An overview of the two steps of the algorithm
is given in Fig. 4. Here the streaming step represents the
advection of the particles in the fluid. Post-streaming DFsf ′i
thus can be written as:

f ′i (x, t +∆ t) = fi(x−∆ tei, t). (2)

As ∆x and∆ t are both equal to one this results in copying
each DF to its adjacent cell along the corresponding veloc-
ity vector. The particle collisions that take place during the
movement of the particles in the fluid are represented by re-
laxing the post-streaming DFs of a cell with densityρ and
fluid velocity u towards the equilibrium distribution func-
tion:

f eq
i = wi

[

ρ +3ei ·u− 3
2

u2 +
9
2
(ei ·u)2

]

, (3)

where the weightswi are:wi = 1/3 for i = 1, wi = 1/18 for
i = 2, ..,7, andwi = 1/36 for i = 8, ..,19. The macroscopic
fluid variables density and velocity are computed as the first
two moments of the distribution functions for each cell

ρ =
19

∑
i=1

fi and u =
19

∑
i=1

ei fi . (4)

Here we use the incompressible model as described in [16],
which alleviates compressibility effects of the standard model
[35], by using a modified equilibrium distribution function
and velocity calculation. Relaxing the DFs towards the equi-
librium is performed with the relaxation timeτ that takes
values in the range from zero to two. It is given by the kine-
matic viscosity, see Eq.(8) below. The DFs for the next time

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 3

Fig. 4 This figure gives an overview of the stream and collide steps for a cell next to an obstacle.

step are then computed with the post-streaming DFs and the
equilibrium distribution functions, calculated using velocity
and density given by the post-streaming DFs, with

fi(x, t +∆ t) = (1−ω) f ′i (x, t +∆ t) + ω f eq
i , (5)

with ω = 1/τ.
This model is explained in more detail in e.g. [16]. It is

commonly calledLBGK model due to the simplification of
the particle collisions with a single relaxation time [2,35].
Note that density and velocity are not changed by the col-
lision process. Hence, the post-streaming DFs, the equilib-
rium DFs and the post-collision DFs all give the same values
for ρ andu according to Eq. (4).

The simplest boundary conditions for LBM are no-slip
obstacles implemented with the bounce-back rule. During
streaming all values that would move into a wall are inverted
and copied back to the originating cell. This is equivalent of
changing Eq. (2) to:

f ′i (x, t +∆ t) = f ĩ(x, t), (6)

and results in a zero tangential and normal velocity between
fluid and obstacle cells. It has been shown, e.g., in [12] that
the actual position of the boundary depends on the chosen
lattice viscosity. This can be overcome by using themulti re-
laxation timemethod (MRT, [25]) that, in contrast to the sin-
gle relaxation time described above, relaxes the differenthy-
drodynamic moments individually. Moreover, various mod-
els for higher order no-slip boundary conditions are avail-
able, e.g., [28], [3], [49], and [12], as the bounce-back scheme
only yields first order accuracy for arbitrary obstacles.

In the following we will describe the conversion of di-
mensional quantities, denoted by primed symbols, into di-
mensionless quantities used in the LBM. Given the real-
world values for viscosityν ′ [m2

s], domain sizeS [m], a de-
sired grid resolutionr and gravitational forceg′ [m

s2] we com-
pute the lattice values in the following way. For simplicity,
we will assume thatSis the length of one side of the domain,
that should be resolved withr cells. Thus, the cell size used
by the LBM can be computed as∆x′ = S/r. The dimensional
time step∆ t ′ is computed by limiting the compressibility
due to the gravitational force. In the following we have cho-
sen a value ofgc = 0.005 to keep the compressibility error
below half a percent. Thus,

∆ t ′ =

√

gc ·∆x′

|g′| (7)

yields a time step ensuring that the force exerted upon each
cell due to the gravitational acceleration is causing less than
a factorgc of compression. Given∆x′ and ∆ t ′, the lattice
viscosityν and relaxation timeτ are computed as

ν = ν ′ ∆ t ′

∆x′ 2 , and τ = 3ν +1/2 . (8)

Likewise, the lattice accelerationg is calculated as

g = g′
∆ t ′ 2

∆x′
. (9)

The following sections will describe extensions to the
basic LBM described so far. We will introduce free surface
handling, adaptive time step resizing, the subgrid turbulence
model and a grid refinement algorithm. Section 3 will then
explain how to couple these extensions to create an efficient
and stable free surface fluid simulator.

2.1 Free Surfaces

To track free surfaces we introduce two additional cell types:
interface cells, andempty cells. Empty cells are void of fluid,
while partially filled interface cells are required to separate
empty cells from fluid cells. Free surface boundary condi-
tions are set for interface cells, which also store a fluid frac-
tion value, similar to volume-of-fluid methods for conven-
tional NS solvers [17]. Furthermore cell type conversions
need to be handled if interface cells become completely filled
or empty. The boundary conditions presented here do not
compute the gas phase as a separate fluid, but assume a vis-
cosity difference between gas and fluid phase that is high
enough to approximate the gas velocity near the interface
with the fluid velocity. This is especially suitable for sim-
ulations with large gas regions, since these do not require
any computations. Empty cells that contain no fluid need not
be considered in the algorithm until they are eventually con-
verted to interface cells as described below. An outline of the
free surface treatment is given in Fig. 5 . While the VOF free
surface model applied here was developed for the simulation
of metal foams [21], without the need to explicitly simulate
the gas phase, other multi-phase LBM approaches have been
developed. In [14], Gunstensen et al. use a Rothmann-Keller
type model with differently colored sets of distribution func-
tions to simulate fluids with multiple phases. Several other
methods exist for multi-phase flows, e.g., [37], [42] or [46].
These have also been extended in different ways, e.g., to

4 Nils Thürey, Ulrich Rüde

allow for high density ratios [19]. On the other hand, in
[13], Ginzburg et al. present a free surface LBM model that
makes use of more complicated boundary conditions, and
prescribes shear stresses at the interface. For problems such
as rising bubbles, these shear stresses should be considered,
but in Section 5 we will focus on test cases where they can
be neglected.

For the model of this paper, the movement of the free
surface is computed directly from the DFs, as these are the
values that are actually advected during the streaming step.
For each interface cell we additionally store the current mass
m that it contains. The fluid fractionε of the cell is computed
with the mass value as

ε(x, t) = m(x, t)/ρ(x, t), (10)

where cell density is computed with Eq. (4). For the mass
exchange between two interface cells, their fluid fraction is
taken into account to approximate the area they share at the
cell boundary:

∆mi(x, t +∆ t) =
[

f ĩ(x+∆ tei, t)− fi(x, t)
]

·ε(x+∆ tei, t)+ ε(x, t)
2

. (11)

In order to guarantee mass conservation, the mass exchange
and the computation of the fluid fraction coefficient is sym-
metric. If the adjacent cell is a fluid cell, the mass exchange
is simplified to

∆mi(x, t +∆ t) = f ĩ(x+∆ tei, t)− fi(x, t) (12)

to match the DFs that are exchanged during the streaming
step. For all interface cells, the value ofm for the next time
step is computed by summing the mass changes of all veloc-
ity directions before performing the streaming step:

m(x, t +∆ t) = m(x, t)+
19

∑
i=1

∆mi(x, t +∆ t). (13)

For fluid cells, the mass is equal to their density, the fluid
fraction beingε = 1. For empty and boundary cells, no mass
exchange needs to be considered, as the mass exchange is
only computed according to the streaming step, and no DFs
are streamed from or into the two latter cell types.

DFs in interface cells coming from the direction of an
empty cell during streaming must be reconstructed to ensure
correct interface movement and a valid set of DFs for inter-
face cells. It is assumed, that the pressure in the gas phase
and its densityρG is the same as reference pressure and den-
sity of the LBM simulation, henceρG = 1. In terms of distri-
bution functions, this means that for an interface cell at po-
sition x with an empty cell at(x+ ∆ tei) the post-streaming
DF f ′ĩ is reconstructed as:

f ′ĩ (x, t +∆ t) = f eq
i (ρG,u)+ f eq

ĩ
(ρG,u)− fi(x, t). (14)

Hereu is the velocity of the interface cell. In this form the
boundary conditions do not include effects such as surface
tension or bubble pressure. These could, however, be in-
cluded as a scaling factor of the two equilibrium distribution

Fig. 5 An illustration of the steps that have to be executed for an inter-
face cell.

functions (for details see e.g. [43] or [22]) and could thus
be combined with the algorithm described in Section 3. All
DFs that would be streamed from empty cells are calculated
with Eq. (14), in addition to the DFs coming from the half
space given by the tangential plane of the fluid surface. The
latter step is required to balance forces on both sides of the
fluid gas interface. A surface normaln is calculated by fi-
nite differences from the fluid fraction values. It is used to
determine the velocity directions coming from the gas phase
half space given by the surface normal (allfi with n ·ei < 0).
The new set of DFs is now used to calculate the current cell
density, and determine from the fluid fraction value whether
the interface cell might have been filled (ε > 1) or emptied
(ε < 0).

Once the stream step including interface cell treatment
and the collide step have taken place, the cell type conver-
sion of filled or emptied interface cells is carried out. While
previous computations for the boundary conditions and the
mass transfer can be computed locally for an interface cell,
this conversion handling requires accesses to neighboring
cells. When performing a cell type conversion from inter-
face cell to empty or fluid cell, usually some excess mass
needs to be redistributed to surrounding interface cells, as
the interface cells often do not end up with exactlym = ρ
or m= 0 at the end of a time step. Furthermore, the layer of
interface cells must remain closed, thus fluid cells may never
have an empty cell neighbor. For an emptied interface cell,
all fluid cells in its neighborhood have to be converted to in-

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 5

terface cells. Likewise empty cells must be converted to in-
terface cells when interface cells in their neighborhood have
become filled. Once all filled and emptied cells have been
handled, the next LBM step is performed. Further details of
the algorithm can be found in, e.g., [31], where interactive
simulations were performed, or in [22], where validation ex-
periments including surface tension were evaluated. Overall,
in addition to the high computational efficiency, the advan-
tages of the algorithm are the mainly local treatment of the
free surface boundary conditions, and the mass conservation
up to machine precision. In the following we will demon-
strate, that the algorithm can also be used to efficiently pro-
duce high quality animations with large grid resolutions.

2.2 Turbulence Model

In order to simulate high Reynolds number flows with the
LBM, the basic algorithm needs to be extended as its sta-
bility is limited once the relaxation parameterτ approaches
1/2. In the following we will apply the Smagorinsky subgrid
turbulence model, as used in e.g. [52]. The subgrid model,
as derived in [18], models the effect of subgrid scale vortices
by modifying the viscosity according to the Reynolds stress
tensor, and can be combined with approaches such as MRT
[57]. The increase in stability allows the computation of tur-
bulent flows with a relatively low grid resolution. Compared
to the small slowdown due to the increased complexity of the
collision operator this usually results in a large improvement
of efficiency.

The subgrid turbulence model applies the calculation of
the local stress tensor as described in [38] to the LBM. This
is simplified, since for LBM each cell already contains infor-
mation about the derivatives of the hydrodynamic variables
in each DF. The magnitude of the strain rate tensor is then
used in each cell to modify the relaxation time according to
the eddy viscosity. For the calculation of the modified relax-
ation time, the Smagorinsky constantC is used, for which
we chose a value of 0.04. Values in this range are commonly
used for LBM simulations, and were shown to yield good
modeling of the subgrid vortices [56]. The turbulence model
is integrated into the basic algorithm as described in Sec-
tion 2 by adding the calculation of the modified relaxation
time after the streaming step, and using this value in the nor-
mal collision step that was described above.

The modified relaxation timeτs is calculated by per-
forming the steps that are described in the following. First
the tensorΠα ,β is obtained for each cell by taking the sec-
ond moment of the non-equilibrium parts of the distribution
functions with

Πα ,β =
19

∑
i=1

eiα eiβ

(

fi − f eq
i

)

, (15)

where we have used the notation from [18]. Thusα andβ
each run over the three spatial dimensions, whilei is the in-
dex of the respective velocity vector for the D3Q19 model.

As in [18], the intensity of the local strain tensorSis then
computed as

S=
1

6C2

(

√

ν2 +18C2
√

Πα ,β Πα ,β −ν

)

. (16)

Now the modified relaxation time is computed as

τs = 3(ν +C2S)+
1
2
. (17)

From Eq. (16) it can be seen thatSwill always have a pos-
itive value – thus the local viscosity will be increased de-
pending on the size of the stress tensor calculated from the
non-equilibrium parts of the distribution functions of thecell
to be relaxed. This effectively removes instabilities due to
small values ofτ.

2.3 Adaptive Time Steps

Gravity driven flows such as the free surface flow of Fig. 1
are usually initialized by a fluid configuration and an gravi-
tational force. The maximum velocities are often not a priori
known, which makes it hard to parametrize LBM simula-
tions and often leads to unnecessarily small time steps in
combination with long computation times. The method de-
scribed in this section dynamically changes the LBM para-
metrization according to the velocities [32]. As the size of
the time step is not a parameter of the LBM equations it is
only changed when necessary due to large or small veloci-
ties. This furthermore requires a recalculation of the LBM
relaxation time and a rescaling of the DFs to match the new
values for pressure and velocity according to the chosen time
step size. The rescaling ensures that dimensionless numbers,
such as Reynolds and Froude number, remain the same after
the change of the time step. The Mach number, on the other
hand, changes due to the rescaling. This is, however, uncriti-
cal for free surface flows, such as those presented in Section
5. An evaluation of the effects of this Mach number change
can be found in [32]. In the following, a subscript ofo will
denote values before the time step change, while a subscript
of n will indicate values for the new parametrization.

Given an initial simulation setup as described in Sec-
tion 2 with a value forτ and an external forceg, the time
step has to be reduced if the norm of the maximum velocity
umax exceeds a certain value:

|umax| >
1
6
/ξ , with ξ =

4
5
. (18)

We use 1/6 as the velocity threshold, as it is the half of 1/3,
at which point the equilibrium DFs according to Eq. (3) can
become negative. If Eq. (18) holds, the new time step size is
given by

∆ tn = ξ ∆ to, (19)

where∆ to, the old step size is initially equal to 1. Once the
fluid slows down, the time step could be increased again to

6 Nils Thürey, Ulrich Rüde

Fig. 6 This picture shows an example of a coarsened fluid region near
the free surf ace with 2 levels of coarser grids. To the left the transfer
cell layers for coupling adjacent levels can be seen.

to ∆ tn = ∆ to/ξ . As for LBM the value ofτ also depends on
the size of the time step, it changes according to:

τn = st

(

τo−
1
2

)

+
1
2
, with st = ∆ tn/∆ to. (20)

The new acceleration for a LBM step is then calculated as

gn = s2
t go . (21)

To account for the new time step size, the velocity and also
the density deviation from the median densityρmed have to
be rescaled for each cell. Hence, after calculatingρo anduo
with Eq. (4) for an interface or fluid cell, the new values are
computed with:

ρn = st (ρo−ρmed)+ρmed and

un = st uo, (22)

where the median densityρmed is calculated from the total
fluid volumeV and the total massM asρmed = V/M. The
total volume is calculated by summing the values ofε over
all cells, whileM is the sum of all masses. The fill fraction
and mass of interface cells are given by:

mn = mo(ρo/ρn) and

εn = mn/ρn , (23)

The non-equilibrium parts of the DFs determine the re-
laxation towards equilibrium state according to the relax-
ation timeτ. Whenτ changes with the changing time step
size, the fluid behavior should not be influenced by this re-
parametrization. Therefore the non-equilibrium parts have to
be rescaled in a way that is similar to the rescaling procedure
for grid refinement from [8]. Furthermore, the rescaled DFs
have to match the new macroscopic quantities for velocity
vn and pressure deviationρn. DFs f n

i for the new time step
size are calculated with:

f n
i = sf

[

f eq
i (ρo,uo)+sτ

(

fi − f eq
i (ρo,uo)

)]

, (24)

wheresf andsτ are calculated as follows:

sf = f eq
i (ρn,un) / f eq

i (ρo,uo)

sτ = st(τn / τo). (25)

The rescaling procedure to change the time step size requires
roughly the same computational effort as a normal collision
step. As it is performed seldom in comparison to the number
of LBM steps, it usually requires ca. 1% of the overall com-
putation time, however, it can reduce the overall number of
time steps significantly.

2.4 Grid Refinement

In [8], Filippova et al. developed an algorithm to couple
LBM simulations of different resolutions. The coupling of
the different grids is done by setting boundary conditions
for adjacent grids in transfer cells. This transfer of informa-
tion between the grids requires a rescaling of the DFs sim-
ilar to Eq. (24). In addition, the values have to be interpo-
lated in space and time for the transfer from coarse to fine
grids. This approach is usually used to refine a simulation
grid around regions of interest, to save computational time
by using a fine grid in this region only, or alternatively to in-
crease the accuracy of the computation by refining the grid
in important regions. E.g., two-phase simulations with MRT
using the model from [14] in combination with adaptive grid
refinement have been demonstrated by Tölke et al. in [45].
Below, we will use a rescaling similar to the one presented
in [45]. Grid refinement has also been used in [54] to com-
pute simulations of an airfoil on a grid with refined blocks.
Rohde recently proposed an alternative approach for grid re-
finement with LBM, see [36] for details. However, since this
method requires an additional filtering step to ensure stabil-
ity, our work is based on the algorithm described in [8].

Fig. 6 illustrates how the transfer between a fine and a
coarse grid is realized. In the following,c and f subscripts
will denote variables on the coarse and fine grids, respec-
tively. Hence, the DFfc,i is a coarse grid distribution func-
tion for the direction of the velocity vectorei , with f f ,i being
its counterpart on the fine grid. As can be seen in Fig. 6, the
grid spacing∆xc and∆ tc on the coarse grid are twice those
of the fine grid. According to Eq. (8) this means that the
relaxation time needs to be calculated with the correspond-
ing parameters for each grid. Reformulating Eq. (8) using
∆xc = 2∆xf , the relaxation time for the coarse grid is calcu-
lated by

τc =
1
2
(τ f −

1
2
)+

1
2
. (26)

In Fig. 6 two kinds of transfer cells are shown: one for trans-
fer from fine to the coarse grid, and vice versa. Due to the
arrangement of the grids, the fine grid cells lie at the same
position as the coarse grid nodes, thus data for a cell of the
coarse grid transfer cells is taken directly from the corre-
sponding fine grid cell. As the macroscopic properties such
as pressure and velocity of the fluid are the same on both
grids, these are not changed during the transfer. However,
due to the different relaxation times, the non-equilibrium
parts of the DFs have to be rescaled with

fc,i = f eq
f ,i +sc f

[

f f ,i − f eq
f ,i

]

, with sc f =
2τc

τ f
. (27)

Here we use rescaling factors similar to those proposed in
[45], instead of those from [8], as the latter ones have a sin-
gularity for τ = 1. For a transfer in the other direction, from
the coarse to the fine grid, Eq. (27) becomes

f f ,i = f eq
c,i +sf c

[

fc,i − f eq
c,i

]

, with sf c =
1

sc f
=

τ f

2τ f
. (28)

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 7

Fig. 7 Here the effect of the different time step sizes for multiplesimulation grids is shown. The numbers indicate the order inwhich the steps
are performed. Dashed arrows indicate interpolation, while straight arrows from one circle to another represent LBM steps with the indicated
time step length.

Note that the rescaling for transfer cells is performed after
collision on both grids. Thus, the DFs are only streamed on
the fine destination grid, while no collision is necessary, as
the DFs are overwritten directly afterwards with DFs from
the coarse grid again.

Likewise, fine grid transfer cells (marked with a filled
downward arrow) again lie at the same positions as coarse
grid cells, thus their DFs are transferred directly with Eq.(27).
However, especially in three dimensions, most of the fine
grid transfer cells are those marked with an outlined down-
ward arrow. For these, the information from the coarse grid
has to be interpolated spatially. Hence, instead of the values
fc,i and f eq

c,i of Eq. (27), the DFs of the coarse grid are first
interpolated to compute the corresponding values at the po-
sition of the fine grid cell. As described in e.g. [54], a second
order interpolation is usually performed spatially.

In addition to saving operations by reducing the total
number of computational cells, the number of time steps to
be performed on coarser grids is reduced, since each time
step on a coarse grid is twice as large as that of the next
finer grid. Thus for two fine grid LBM steps, only a single
one has to be performed on the coarse grid. This, however,
means that for one of the two fine grid LBM steps, the grid
transfer also has to include temporal interpolation of firstor
second order. An overview of the basic time step scheme for
a total of three coupled grids is given in Fig. 7.

3 Adaptive Coarsening Algorithm

In this paper we take the view that the simulation is defined
by a global uniform fine grid, that can be augmented with
auxiliary coarser grids to accelerate the computation – at the
price of a possibly reduced accuracy. Thisadaptive coars-
eningwill be described in the following paragraphs. We will
explain how to combine the free surface LBM method with
the turbulence model and the adaptive time steps described
above. Afterwards we will show how to adaptively perform
a coarsening of the fine grid simulation using a set of cell
flag based rules, and how to ensure stability of the trans-
fer between the different grid levels. Note that this approach

also requires a subsequent refinement of initially coarsened
regions, once the free surface moves there during the course
of the simulation.

3.1 Turbulence Model

The free surface extension of Section 2.1 and the subgrid
model of Section 2.2 can be combined directly. The turbu-
lence model differs from approaches such as MRT since it
does not change the equilibrium DFs. Furthermore, the free
surface equations in Section 2.1 are independent of the lat-
tice viscosity. Thus, the boundary conditions and mass track-
ing formulas remain valid. The stability of the turbulence
model is transferred directly to the free surface simulations,
hence enabling the computation of free surface flows with
high Reynolds numbers, and values ofτ close to 0.5. A
remaining source of instability, however, is the problem of
fluid velocities becoming too large during the course of the
simulation.

3.2 Adaptive Time Steps

The adaptive time step procedure from Section 2.3 can be
used in order to avoid too large time steps causing instabil-
ities. When the size of the time step is reduced to simulate
large velocities, the value ofτ becomes smaller according to
Eq. (20). Instabilities due toτ being almost 0.5 are allevi-
ated by applying the turbulence model. This in turn requires
a modification of Eq. (24), as the non-equilibrium scaling of
the adaptive time steps depends on the relaxation timeτ.

With Eq. (20), the lattice viscositiesνn andνo for the old
and the new time step are calculated. Eq. (15), (16) and (17)
can then be used to compute the modified local relaxation
times for each cell,τs,n and τs,o, with νn and νo. Eq. (24)
must be modified to include the local relaxation time from
the turbulence model. This is done by calculating the scaling
factorsτ using the local relaxation times as

sτ = st(τs,n / τs,o). (29)

8 Nils Thürey, Ulrich Rüde

Combining the turbulence model and the adaptive time steps
in this way enables the simulation of high velocities without
stability problems. Nevertheless, small time steps require
more LBM steps to compute the solution.

The following section will demonstrate how to combine
the techniques presented so far with an algorithm to adap-
tively coarsen the computational grid inside of the fluid do-
main with the goal of reducing the computational effort re-
quired for each LBM step. This is an important component
for a stable and highly efficient LBM free surface fluid sim-
ulator.

3.3 Adaptively Coarsened Grids

For dynamic problems, such as free surface flows or flows
with moving obstacles, the techniques described in Section2.4
cannot be applied without modifications. In [7] and [24] an
algorithm based on the work of Filippova et al. is used to
increase the accuracy of a simulation by adaptively refin-
ing the grid around an obstacle or a bubble in the fluid. As
this work is focused on the simulation of free surface flows
such as those of Fig. 1, the region of interest, that needs to
be accurately computed is the free surface itself. Hence, we
perform the simulation of this surface on a fine computa-
tional grid, while the accuracy of the computation inside of
the fluid may be less important. In the following we will de-
scribe an approach to adaptively coarsen the grid inside of
large fluid regions by dynamically changing a set of coarser
grids according to the movement of the surface on the fine
grid. The criterion for coarsening is thus given by the dis-
tance of a cell to the free surface. An alternative would be to
allow also the coarsening of e.g. smooth free surface regions
with few details. However, this would cause problems for the
mass conservation with the mass flux given by Eq. (11) and
make generating a triangulated surface more complicated.

We thus ensure that all interface cells are treated on the
finest grid. Likewise, obstacle boundaries are calculated on
the finest grid. Similar to the notation used in multi-grid lit-
erature [47], we will denote the fine to coarse grid transfer
with restrictionand the coarse to fine grid transfer withpro-
longationin the following sections.

3.3.1 Boundary Cell Conversion

To adapt the coarse grids to the movement of the free sur-
face, while keeping the transfer cell layers consistent, we
have developed a set of rules to determine when to refine or
coarsen a grid region. The handling of the adaptive coars-
ening requires five passes in total, each of which, however,
only applies to a single type of transfer cell. For these flag
checks, a cell and its neighborhood, together with the neigh-
borhood of the cell on the next finer grid, are necessary. The
first three passes handle refining the coarse fluid regions, e.g.
when the free surface comes near the coarsened grid region,
while passes four and five handle coarsening fluid regions
where the free surfaces has moved away from. It would be

Fig. 8 Cell types for the adaptive coarsening algorithm.

possible to perform some computations of the passes in par-
allel, but they only take a small part of the overall computa-
tional time, as will be explained in more detail in Section 5.
Hence, we have decided to explain and implement each pass
as a separate sweep over the cell flags. In the following, we
will distinguish the five cell types shown in Fig. 8:

– Fluid: these are valid fluid cells treated as described in
Section 2. They are not interpolated or used for interpo-
lation.

– Unused: these cells are not included in the simulation
similar to the empty cells that represent regions without
fluid.

– From-Fine: DFs for these cells are transferred from the
adjacent fine grid.

– From-Coarse: Likewise, DFs are transferred from the
next coarser grid (possibly with interpolation).

– To-Fine: the DFs of these cells are used to interpolate the
from-coarse transfer cells on the finer level. During the
simulation they are treated as normal fluid cells.

The following rules are applied to all coarse levels. For
the first level of coarsening, we ensure that the coarsened
region keeps a distance of one cell layer to the free surface,
while subsequent coarsened levels ensure that they keep a
distance to the restriction region of the next finer level. In
the following explanation we can therefore focus onfrom-
fineandto-finecells, which are equivalent to interface cells
for the finest coarse level. Due to the alignment of grids as
described in Section 2.4. the fine grid neighborcf of a coarse
grid cell cc at position(i, j ,k) is obtained by accessing cell
(2i,2 j ,2k) on the fine level.

Pass 1:During the first pass,from-finetransfer cells on
the coarse grid are checked for consistency. They are re-
moved if the fine grid cell is not used for interpolation to
a finer grid itself. Thus, ifcf is a from-fineor to-finecell, cc
is converted to an unused cell. In this case fluid cells in the
neighborhood ofcc have to be converted intofrom-finecells,
to ensure a closed transfer cell layer.

Pass 2:The second pass checks whether there are any
unnecessaryfrom-coarsecells. It only affects the coarse grid

Fig. 9 Pass 1.

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 9

Fig. 10 Pass 2.

layer. One of these cells can be converted to a fluid cell when
there are no unused cells in its neighborhood. Hence, the
transfer cell is not required in the prolongation region. Like-
wise, afrom-coarsecell can be turned to unused, if none of
its neighbors are fluid cells. A special case forfrom-coarse
cells is necessary to prevent a double transfer between grids.
It is not desirable to to have twofrom-coarsecells at the
same position on different grids. Thus for afrom-coarsecell
cc, it has to be checked whethercf is a from-coarsecell as
well. If this is the case,cc has to be converted into a fluid
cell, reinitializing its neighborhood to keep a closed layer of
from-coarsecells.

Pass 3:After this, from-fine cells are checked for con-
version to fluid cells. This has to be done when the corre-
sponding fine grid cell is afrom-coarsecell, meaning that
the finer grid transfer layer has moved away from the pro-
longation transfer layer on the coarse grid. In consequence,
the from-coarsetransfer cell layer of the finer grid has to be
updated, turningfrom-coarseand fluid cells in the fluid re-
gion of the coarser grid into unused cells, and adding new
from-coarsecells at the moved border.

These three passes are enough to ensure a refinement of
coarsened regions when there is an inward movement of the
free surface and the prolongation regions. The following two
passes are similarly used to handle moving the restriction re-
gions outwards, once the free surface moves away from it.
Thus, passes four and five handle coarsening the computa-
tional grid.

Pass 4:For the coarsening it is first necessary to check
whether an empty cell is a candidate for afrom-finetrans-
fer. This is the case if its fine grid neighbor is a valid fluid
cell, and not afrom-fineor to-fine cell. The empty cell is
then turned into afrom-finetransfer cell and initialized by a
transfer of the DFs from the fine grid.

Pass 5:The last pass thus checks whether afrom-fine
cell can be converted into a fluid cell, coarsening the re-
gion around it. This is possible when all fine grid neighbors

Fig. 11 Pass 3.

Fig. 12 Pass 4.

are valid fluid cells, notfrom-fineor to-fine transfer cells.
Furthermore, the neighborhood of thefrom-finecell on the
coarse level must not contain any unused cells. If these crite-
ria are met, thefrom-finecell is turned into a fluid cell. Due
to the previous checks, its neighborhood is already valid. Af-
terwards, all fine grid cells lying between the coarse grid
cell and its neighbors have to be checked to reinitialize the
from-coarsetransfer cell layer. Fine grid cells in the center
of eight valid fluid coarse grid cells are directly turned into
unused cells. Fine grid cells lying between fluid cells on the
coarse grid have to be converted tofrom-coarsecells, while
remainingfrom-coarsecells without fluid neighbors are re-
moved from the simulation by setting them to unused.

Although the cell conversion does require 5 passes in to-
tal, the neighborhood checks are confined to small regions
as we apply linear instead of second-order spatial interpola-
tion for the prolongation. This is essential for the simplic-
ity and efficiency of the conversion rules, as irregularities of
the coarse grid transfer layer for the free surface would oth-
erwise require checks in large neighborhoods of thefrom-
coarsetransfer cells. In Section 4 we will provide evidence
that the accuracy of the linear interpolation is computation-
ally sufficient by comparing it directly to a second order in-
terpolation.

3.3.2 Grid Transfer

These conversion rules are checked before each coarse grid
LBM step. They are enough to ensure a valid and closed
layer for both restriction and prolongation. As direct trans-
fers across multiple grid levels are prevented, and the re-
striction transfer layer of first coarsened level does not cover
interface cells, the resulting simulation regions usuallyspan
2-3 fluid cells between their transfer layers. After adapting
the grid, restriction and prolongation are performed to set
correct boundary conditions for the actual LBM step.

Fig. 13 Pass 5.

10 Nils Thürey, Ulrich Rüde

The transfer of DFs on the boundaries is done by includ-
ing the modified relaxation time of the turbulence model in
Eq. (27). After interpolation of the DFs, the modified relax-
ation timesτsc andτs f are calculated with Eq. (27) using the
viscositiesνc andν f , respectively. Finally, the scaling factor
sc f is calculated with

sc f = (
1

τsc
−1)

2τsc

τs f
. (30)

and used instead of Eq. (27) with Eq. (27) and Eq. (28).
A remaining problem of the algorithm discussed so far

is, that simulations with low viscosities are disturbed by ar-
tifacts that are caused by the overlapping grids. An exam-
ple of this problem can be seen in Fig. 14. The artifacts are
caused by pressure fluctuations near obstacles and become
noticeable as self-reinforcing patterns at the grid boundaries
that cause strong disturbances of the flow field. The prob-
lem here is, that according to the description of Section 2.4
the restriction is done using a single fine grid cell, analogous
to injection in a multi-grid algorithm. The resulting infor-
mation is used on the coarse grid, and during the subsequent
steps propagated to the fine grid again two cells further in the
fluid region at thefrom-finetransfer cells. To break up this
pattern of information flow, we use a restriction that takes
into account all fine grid cells within the fine grid neigh-
borhood of a coarse grid cell, as shown on the right side
of Fig. 14 for a two dimensional example. Thus, the cells
that were previously not taken into account for the restric-
tion also contribute to the coarse grid transfer cells. For in-
terpolation a simple gauss kernel gives good results. Thus,
the interpolated DFs̃f f ,i to use with Eq. (28) are calculated
as

f̃ f ,i(x) =
19

∑
j=1

f f ,i(x+∆ tej)
wj

wtotal
(31)

with

wj = e−|ej |−e−2·3, wtotal =
19

∑
j=1

wj (32)

This interpolation requires more accesses to fine grid DFs
for restriction, but effectively prevents the developmentof
the artifacts described above.

In conclusion, our algorithm proceeds with the following
steps for all levels that are advanced at a given time:

1. Start with coarsest grid level.
2. Adapt the grid:

(a) perform refinement passes 1,2 and 3,
(b) perform coarsening passes 4,5.

3. Set the boundary conditions with restriction and prolon-
gation.

4. Perform the LBM step (for the finest level this includes
handling the free surface).

5. Continue with the next finer grid.

We will evaluate the accuracy of both the interpolation scheme
and the adaptive coarsening algorithm in the following sec-
tion.

Fig. 15 Accuracy measurement for the interpolation test case with
static coarsening.

4 Validation

The accuracy of the different grid transfer methods will be
determined by comparingE , which is the average deviation
of the fluid fraction valuesε over all cells. The fluid fraction
deviation measurement effectively compares the difference
of the position of the free surface for two given configura-
tions. If the configurations are completely different, its value
will be close to one, while values close to zero indicate a
similar shape of the fluid. We normalize the measurements
by the total number of measured points to compare simu-
lations of different sizes, and average the measurements at
different times during the course of the simulation. The val-
ues shown in Fig. 15 and Fig. 16 are thus computed as

E =
1

ttotal

1
ntotal

ttotal

∑
t=1

∑
x∈Ω

|εref(x, t)− ε(x, t)| , (33)

whereεref are the fluid fraction values of the corresponding
fine-resolution reference simulation,Ω is the size of the do-
main ranging from 0 to 1 in each spatial dimension, andttotal
is the number of timesteps to average over. Likewise,ntotal
is the total number of chosen points whereE is measured at.
For Fig. 15 the grid resolution of the reference simulation
was used to set the number of measurement points. Note
that E in contrast to e.g. error metrics from the multi grid
literature does not measure the error caused by representing
the problem on a coarser grid, but only the position of the
free surface.

The following test cases were parametrized to represent
a cubic domain of 0.1m length with water and earth gravity.
Hence, we choseν ′ = 10−6 [m2/s] and an acceleration of
g′ = (0,−9.81,0)T [m/s2].

4.1 Test case with static coarsening

The different interpolation methods will be tested with a
setup of a drop falling into a standing fluid, similar to Fig. 17.
The lower half of the domain is statically coarsened. Dur-
ing the course of the simulation the free surface keeps a
distance of several cells to the coarsened region, hence the
coarse cells grids do not have to be changed. Fig. 15 shows

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 11

Fig. 14 Example of artifacts that occur for a simple standing fluid test case with a resolution of 1282 and two coarse levels. Each picture shows
the density distribution in the lower left corner of the fluid, where green values indicateρ = 1.0 while a red color indicates larger values. The
upper row of pictures was created without any interpolationfor the prolongation, while the lower row makes use of Eq. (31).

results in two and three dimensions, to the left and right,
respectively, each for three grid resolutions. The reference
simulation is a simulation run on an uncoarsened grid with
the shown resolution. The coarsened simulation is run three
times with the following interpolation methods:

A) without temporal interpolation and with linear spatial in-
terpolation,

B) without temporal interpolation and with second order spa-
tial interpolation,

C) with linear temporal and second order spatial interpola-
tion.

Each of these runs was performed with two levels of coars-
ening, one with halved, and the coarsest one with 25% of the
original resolution. For reference, the simulation is alsorun
once on a grid with half the shown resolution (referenced as
coarsein the following).

Throughout the runs it can be seen, that the adaptively
coarsened simulations are significantly more accurate than
the one run with halved resolution. Furthermore, there is
only a slight difference between the different interpolation
variants. The interpolation method C is the most accurate
one, as was expected. The other two, however, only show
small decreases in accuracy. This can be attributed to the
fact, that for the coarsened grids, the free surface and the
obstacles are still calculated on the finest grid everywhere.
These regions determine the overall motion of the fluid. Thus,
in contrast to test cases such as [55], the coupling with the
coarser grids is sufficiently accurate without the temporal
interpolation, and more importantly, without second order
spatial interpolation. Former allows us to use the grid com-
pression technique [33] on all grids, as only a single time
step needs to be stored in memory. It also saves one third
of the total memory accesses that are required to interpo-
late the coarse grid DFs to the fine grid, as for each second
interpolation step the temporal interpolation would require
access of two DFs instead of one. The linear spatial interpo-
lation greatly simplifies the handling of the grid adaptivity,
and significantly reduces the number of memory accesses.
For linear interpolation, fine grid cells that lie between 2,4
and 8 coarse grid cells require the same number of DF ac-
cesses for each interpolated one. With second order spatial

interpolation, it would, however, require 4, 16 and 64 DF ac-
cesses, respectively. For the test case described above with
a grid resolution of 1283 this means, that on average only
130773 DFs have to be accessed and interpolated for method
A, instead of 363253 for interpolation method B.

4.2 Test case with dynamic coarsening

To validate the accuracy of the adaptive coarsening tech-
nique described in Section 3 we have used a breaking liquid
column setup similar to Fig 20. The domain is filled with a
region of fluid in the lower left corner, taking up a quarter
of the domain volume. The gravity causes the fluid to splash
back and forth, which makes constant updates of the coars-
ened region necessary.

Accuracy measurements ofE computed with Eq. (33)
are shown in Fig. 16. Here again a coarse simulation with
half the shown resolution and an adaptively coarsened simu-
lation (using interpolation method A) are compared to a sim-
ulation run on a homogeneously fine grid. It can be seen, that
the accuracy of the adaptive simulations is slightly less than
those of the previous test case. However, throughout the runs
they are more accurate than the coarse simulation, while re-
quiring significantly less LBM cells than the fine simulation
and yielding the same amount of surface details. The fol-
lowing section will show several examples of detailed sim-

Fig. 16 Accuracy measurement for the dynamic test case with the
adaptive coarsening.

12 Nils Thürey, Ulrich Rüde

Table 1 Workload distribution for an typical simulation.

Procedure Workload percentage
Fine grid LBM steps 73.46%
Adaptive coarsening 14.27%
LBM steps of all coarse grids 7.25%
Other code 5.02%

ulations and illustrate the speedup that can be achieved by
adaptive coarsening.

5 Results and Performance

Before analyzing the overall performance, it is important to
know how the workload is distributed between the different
parts of the algorithm. We have therefore profiled a run of
the test case shown in Fig. 17 with a resolution of 2563 and
three coarse levels.

As can be seen in Table 1, the majority of the compu-
tations are necessary for advancing the finest grid and com-
puting the free surface boundary conditions. The adaptive
coarsening itself requires more computational effort thanthe
LBM steps on the coarse grids themselves. This is due to the
fact that the coarse grids usually only contain relatively few
fluid cells, and the adaptive coarsening includes the calcu-
lation of the grid transfer which for a single cell requires
computations similar to a normal LBM cell update.

Usually, the performance of LBM programs is measured
with the number of cell updates per second:MLSUPS(mil-
lion lattice site updates per second). However, this is not
valid anymore once adaptive grid resolutions are involved.In
this case, it is crucial how much faster the overall simulation
is done in comparison to a standard simulation using a sin-
gle grid level. The following tables shows several MLSUPS
measurements only to illustrate the performance of our im-
plementation without adaptive coarsening for a falling drop
test case as shown in Fig. 17.

Table 2 shows that our basic implementation yields a
high performance on different CPU architectures. This is
important, as a poor implementation of the basic algorithm
might yield larger speedups when combined with our adap-
tive coarsening technique – even when the overall perfor-
mance would still be low. In the following we will demon-
strate the achievable speedups with the test cases shown in

Table 2 Performance measurements of the basic free surface simula-
tion code without adaptive coarsening on different architectures with
up to four processors.

CPU MLSUPS
Pentium4 3.2 GHz 1.84
Athlon64 2.4 GHz 1.98
4-way Opteron 4·2.2 GHz (with OpenMP) 3.73

Fig. 18 Performance for a resolution of 1203 on a single Pentium4
CPU with 3.2GHz.

Fig. 19 Performance with OpenMP parallelization for a resolution of
4803 on a four-way Opteron node (each CPU with 2.2GHz).

– Fig. 17 (A), the impingement of a falling drop on a fluid
surface, and

– Fig. 20 (B), the breaking of a column of liquid.

Both cases were run in twp different sizes: 1203 and 4803.
Each graph shows the total computation time with a different
number of coarse grids. The simulation of the first bar to the
left is run only on the finest level, while the others use up to
three levels of adaptive coarsening.

Two dimensionless variables, the Reynolds number (Re)
and the Froude number (Fr) for the three test cases are shown
in Table 3. The Reynolds number represents the ratio be-
tween a characteristic lengthL times velocityv and the vis-
cosity (Re= Lv/ν), while the Froude number relates the ve-
locity to the gravity and water heightH (Fr = v/

√
gH). Note

that the high Reynolds numbers are the result of the chosen
viscosity of water, which is close to zero. These parametriza-
tions clearly represent the upper limits of this method. As
the primary goal of these test cases was the measurement of
the performance of the adaptive coarsening, these parame-
ters were chosen to test the limits of stability of the algo-
rithm.

In Fig. 18 the performance for the relatively small res-
olution of 1203 on a Pentium4 CPU with 3.2GHz is visi-
ble. For test case A speed up of ca. 2.5 is achieved once the
first coarsened level is used. Due to the small size of the do-
main, additional levels of coarsening do not yield a further
speedup. Similarly for test case B, the first coarsened level
yields a speedup of ca. 1.6. The lower speedup in compari-
son to test case A can be attributed to the fact that test case
B has a smaller volume of fluid and exhibits a larger num-
ber of thin fluid sheets. Hence, it is a harder problem for our
adaptive coarsening technique.

The performance results of Fig. 19 are for a resolution
of 4803 on a four-way Opteron node with 2.2 GHz for each

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 13

Fig. 17 Images of the falling drop simulation with a grid resolutionof 4803 and the adaptive coarsening algorithm. The simulation was
parametrized to represent a basin of water with 10cm side length.

of the four CPUs. The traversal of the finest grid was paral-
lelized with OpenMP. As was demonstrated above, the ma-
jority of the work is done on the finest grid – thus the par-
allelization is only applied to the traversal of the finest grid
level. For a simulation without adaptive coarsening, test case
A now requires more than 54 million cells. The total speedup
with 3 coarsened grids is 3.85 in this case, and 3.16 for test
case B. In contrast to the 1203 runs, more than a single level
of coarsening yields a further speedup for test case A.

To allow the setup of more complicated simulation prob-
lems, and demonstrate the ability of our implementation to
efficiently simulate free surface animations, we have imple-
mented an interface to the 3D softwareBlender. Since ver-
sion 2.40 the free surface simulation is part of the package,
and can be obtained from [48]. It allows the productions of
high quality fluid animations as shown in Fig. 21, and was
used to produce the visualizations of our simulation runs.
The sources for the solver including the implementation of
our adaptive coarsening algorithm were released under the
GNU Public License, and are available on the same website.

Table 3 Reynolds number (Re) and Froude number (Fr) for the three
test cases used in Section 5. The domain size is 0.1m,ν ′ = 10−6 [m2/s]
andg′ = (0,−9.81,0)T [m/s2].

Falling Drop Breaking Dam Filled Glass

Re 200000 450000 100000
Fr 14.28 5.32 6.39
L [m] 0.02 0.09 0.025
v [m/s] 10 5 4
H [m] 0.05 0.09 0.04

6 Conclusions & Outlook

We have presented a stable method for free surface simu-
lations with the LBM. It can be used to efficiently perform
simulations with large volumes of fluid and thus enables the
creation of highly detailed and physically correct fluid an-
imations. This is achieved by our algorithm to adaptively
coarsen the simulation resolution inside of larger fluid vol-
umes. A set of rules is used to dynamically adapt the coars-
ened regions to the movement of the free surface.

The combination with a subgrid turbulence model and
an adaptive time step algorithm ensures stability of the fluid
simulator. We have validated the algorithm comparing it to
a fine grid simulation for static and dynamic test cases. The
performance was evaluated with two different simulation se-
tups and various grid sizes. Depending on the architecture
and amount of fluid in the simulation, speed up factors of
more than 3.5 are possible in comparison with a simulation
on a single fine grid.

One area of future work will be to not only reduce the
computational time but also to reduce the amount of mem-
ory. In our current implementation we allocate all simulation
grids throughout the computational domain. Hence, we are
planning to adaptively allocate patches in the fluid region for
each grid level separately. This should significantly decrease
the required memory, as coarsened regions inside of the fluid
only have to store the coarsest grid level. It might, however,
decrease the performance due to increased overhead of the
patch management.

In order to e.g. accurately resolve near wall shear layers
of turbulent flows, the coarsening criterion could be changed
to only coarsen areas with a low shear stress. Another chal-

14 Nils Thürey, Ulrich Rüde

Fig. 20 Pictures of the breaking dam setup, again with a grid resolution of 4803 and a parametrization of a 10cm domain with water.

lenge will be to efficiently parallelize our algorithm to runon
large distributed memory systems, as was e.g. demonstrated
for adaptive multigrid solvers in [1]. Such a parallelization
becomes more difficult once adaptive approaches, like the
one presented here, are used, since the information across all
grids involved in the simulation needs to be synchronized. In
order to further enhance the impression of large fluid scenes
for animations, the three dimensional simulation could be
coupled to a two dimensional one for efficient simulations
of large water surfaces.

As the motion of the free surface is naturally hard to esti-
mate from still pictures, we have made the animations corre-
sponding to Fig. 17,20 and 21 available on our website [44].

Acknowledgements This research is funded by the DFG Graduate
College GRK-2443-D Image Analysis and Synthesis. We furthermore
thank Carolin Körner for the metal foam samples, and ThomasZeiser
for the helpful discussions.

References

1. Bastian, P., Birken, K., Lang, S., Johannsen, K., Neuß, N., Rentz-
Reichert, H., Wieners, C.: UG: A flexible software toolbox for
solving partial differential equations. Computing and Visualiza-
tion in Science1, 27–40 (1997)

2. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision pro-
cesses in gases. Phys. Rev.94, 511–525 (1954)

3. Bouzidi, M., Firadouss, M., Lallemand, P.: Momentum transfer of
a lattice-boltzmann fluid with boundaries. Phys. Fluids13, 3452–
3459 (2002)

4. Buwa, V.V., Deo, D.S., Ranade, V.V.: Eulerian-Lagrangian Simu-
lations of Unsteady Gas-Liquid Flows in Bubble Columns. Int. J.
Multiphase Flow (2005)

5. Causin, P., Miglio, E., Saleri, F.: Algebraic factorizations for 3D
non-hydrostatic free surface flows. Computing and Visualization
in Science5(2), 85–94 (2002)

6. Chu, N.S.H., Tai, C.L.: MoXi: real-time ink dispersion inab-
sorbent paper. ACM Trans. Graph.24(3), 504–511 (2005)

7. Crouse, B., Krafcyzk, M., Tölke, J., Rank, E.: A LB-basedap-
proach for adaptive flow simulations. Int. J. Modern Phys. B17,
109–112 (2003)

8. Filippova, O., Hänel, D.: Grid Refinement for Lattice-BGK mod-
els. J. Comp. Phys.147, 219–228 (1998)

9. Frisch, U., d’Humières, D., Hasslacher, B., Lallemand,P.,
Pomeau, Y., Rivert, J.P.: Lattice Gas Hydrodynamics in Two and
Three Dimensions. Complex Systems1, 649–707 (1987)

10. Geist, R., Rasche, K., Westall, J., Schalkoff, R.: Lattice-
Boltzmann Lighting. Proc. of Eurographics Symposium on Ren-
dering 2004 pp. 355–362 (2004)

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids 15

Fig. 21 Several frames of animation from a simulation of filling a glass shaped obstacle.

11. Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark
computations based on Lattice-Boltzmann, Finite Element and Fi-
nite Volume Methods for laminar Flows. Computers and Fluids
35 [8-9] (2006)

12. Ginzburg, I., d’Humières, D.: Multi-reflection boundary condi-
tions for lattice Boltzmann models. Phys. Rev. E68:066614-1-30
(2003)

13. Ginzburg, I., Steiner, K.: Lattice Boltzmann model for Free-
Surface flow and its Application to Filling Process in Casting. J.
Comp. Phys.185/1(2003)

14. Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti,G.: Lattice
Boltzmann model of immiscible fluids. Phys. Rev. A43 (1991)

15. He, X., Luo, L.S.: A Priori Derivation of Lattice Boltzmann Equa-
tion. Phys. Rev. E55, R6333–R6336 (1997)

16. He, X., Luo, L.S.: Lattice Boltzmann model for the incompress-
ible Navier-Stokes equations. J. Stat. Phys.88, 927–944 (1997)

17. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) Method for the
Dynamics of Free Boundaries. J. Comp. Phys.39, 201–225 (1981)

18. Hou, S., Sterling, J.D., Chen, S., Doolen, G.: A Lattice Boltzmann
Subgrid Model for High Reynolds Number Flow. Fields Institute
Communications6, 151–166 (1996)

19. Inamuro, T., Ogata, T., Tajima, S. and Konishi, N.: A lattice boltz-
mann method for incompressible two-phase flows with large den-
sity differences. J. Comp. Phys.198, 628–644 (2004)

20. Körner, C., Pohl, T., Rüde, U., Thürey, N., Zeiser, T.: Parallel
Lattice Boltzmann Methods for CFD Applications. In: A. Bru-
aset, A. Tveito (eds.) Numerical Solution of Partial Differential
Equations on Parallel Computers,LNCSE, vol. 51, pp. 439–465.
Springer (2005)

21. Körner, C., Singer, R.: Numerical Simulation of Foam Formation
and Evolution with Modified Cellular Automata. Metal Foams
and Porous Metal Structures pp. 91–96 (1999)

22. Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde,U.: Lattice
Boltzmann Model for Free Surface Flow for Modeling Foaming.
Journal of Statistical Physics121 [1-2], 179–196 (2005)

23. Körner, C., Thies, M., Singer, R.F.: Modeling of Metal Foaming
with Lattice Boltzmann Automata. Advanced Engineering Mate-
rials (2002)

24. Krafczyk, M.: Gitter-Boltzmann-Methoden - von der Theorie zur
Anwendung. Habilitation (2001)

25. Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method:
Dispersion, dissipation, isotropy, Galilean invariance,and stabil-
ity. Phys. Rev. E61(6), 6546–6562 (2000)

26. Losasso, F., Gibou, F., Fedkiw, R.: Simulating Water andSmoke
With an Octree Data Structure. ACM Trans. Graph.23(3), 457–
462 (2004)

27. M. Krafczyk and J. Tölke and E. Rank and M. Schulz: Two-
Dimensional Simulation of Fluid-Structure Interaction using
Lattice-Boltzmann Methods. Computers and Structures79 (2001)

28. Mei, R., Luo, L.S., Shyy, W.: An Accurate Curved Boundary
Treatment in the Lattice Boltzmann Method. J. Comp. Phys.155,
307–330 (1999)

29. Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. As-
tron. Phys.30, 543–574 (1992)

30. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simu-
lation for interactive applications. Proc. of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer animation pp.
154–159 (2003)

31. N. Thürey and C. Körner and U. Rüde: Interactive Free Surface
Fluids with the Lattice Boltzmann Method, Technical Report05-
4. Tech. rep., Department of Computer Science 10 System Simu-
lation (2005)

32. N. Thürey and T. Pohl and U. Rüde and M. Oechsner and C.
Körner: Optimization and Stabilization of LBM Free Surface
Flow Simulations using Adaptive Parameterization. Computers
and Fluids35 [8-9], 934–939 (2006)

33. Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., Rüde, U.: Opti-
mization and Profiling of the Cache Performance of Parallel Lat-
tice Boltzmann Codes in 2D and 3D. Tech. Rep. 03–8, Germany
(2003)

34. Pohl, T., Thürey, N., Deserno, F., Rüde, U., Lammers, P., Wellein,
G., Zeiser, T.: Performance Evaluation of Parallel Large-Scale
Lattice Boltzmann Applications on Three Supercomputing Archi-
tectures. In: Proc. of Supercomputing Conference 2004 (2004)

16 Nils Thürey, Ulrich Rüde

35. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGKMod-
els for Navier-Stokes Equation. Europhys. Lett.17(6), 479–484
(1992)

36. Rohde, M., Kandhai, D., Derksen, J.J., van den Akker, H.E.A.:
A generic mass conservative local grid refinement techniquefor
lattice-Boltzmann schemes. Int. J. Num. Methods in Fluids51,
439 (2006)

37. Shan, X., Chen, H.: Simulation of non-ideal gases and liquid-gas
phase transitiions by the lattice Boltzmann equation. Phys. Rev. E
49, 2941–2948 (1994)

38. Smagorinsky, J.: General circulation experiments withthe primi-
tive equations. Mon. Wea. Rev.91, 99–164 (1963)

39. Stam, J.: Stable Fluids. Proc. of ACM SIGGRAPH pp. 121–128
(1999)

40. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics
and Beyond. Oxford University Press (2001)

41. Sussman, M.: A second order coupled level set and volume-of-
fluid method for computing growth and collapse of vapor bubbles.
J. Comp. Phys.187/1(2003)

42. Swift, M.R., Orlandi, E., Osborn, W.R., Yeomans, J.M.: Lattice
Boltzmann simulations of liquid-gas and binary fluid systems.
Phys. Rev. E54, 5041–5052 (1996)

43. Thuerey, N.: A Lattice Boltzmann method for single-phase free
surface flows in 3D. Masters thesis, Dept. of Computer Science
10 System-Simulation, University of Erlangen-Nuremberg (2003)

44. Thürey, N., Rüde, U.: Webpage: Stable Free Surface Flows with
the Lattice Boltzmann Method on adaptively coarsened Grids
(2005). http://www10.informatik.uni-erlangen.de/
~sinithue/sfsflbmacg/

45. Tölke, J., Freudiger, S., Krafcyzk, M.: An adaptive scheme using
hierarchical grids for lattice Boltzmann multi-phase flow simula-
tions. Computers & Fluids17, 109–112 (2003)

46. Tölke, J., Krafcyzk, M., Schulz, M., Rank, E.: Lattice Boltzmann
Simulations of binary fluid flow through porous media. Phil.
Trans. R. Soc. Lond. A360, 535–545 (2002)

47. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic
Press (2001)

48. Veldhuizen, B., Langlotz, J., et al.: Blender open source 3D graph-
ics creation (2005).http://www.blender3d.org

49. Verberg, R., Ladd, A.J.C.: Accuracy and stability of a lattice-
boltzmann model with subgrid scale boundary conditions. Phys.
Rev. E65(016701-1-6) (2001)

50. Wang, C., Wang, Z., Xia, T., Peng, Q.: Real-time snowing simula-
tion. The Visual Computer pp. 315–323 (2006)

51. Wei, X., Li, W., M”uller, K., Kaufman, A.E.: The Lattice-
Boltzmann Method for Simulating Gaseous Phenomena. IEEE
Transactions on Visualization and Computer Graphics10(2), 164–
176 (2004)

52. Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., Kaufman,
A.: Natural phenomena: Blowing in the wind. Proc. of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer ani-
mation pp. 75–85 (2003)

53. Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes
equations with transforming smoothers: Algorithms and numer-
ical results. Numer. Math.54, 543–563 (1989)

54. Yu, D., Mei, R., Luo, L.S., Shyy, W.: Viscous flow computa-
tions with the method of lattice Boltzmann equation. Progress
in Aerospace Sciences 395 (2003)

55. Yu, D., Mei, R., Shyy, W.: A multi-block lattice Boltzmann
method for viscous fluid flows. Int. J. for Numerical Methods
in Fluids39 (2002)

56. Yu, H., Girimaji, S., Luo, L.S.: Lattice Boltzmann simulations
of decaying homogeneous isotropic turbulence. Phys. Rev. E71
(2005)

57. Yu, H., Luo, L.S., Girimaji, S.: LES of turbulent square jet flow
using an MRT lattice Boltzmann model. Computers & Fluids25,
957–965 (2006)

N. Thürey is a PhD student at the
department for system simulation at
the University of Erlangen. He re-
ceived his Master’s degree in com-
puter science in 2003, and is since
then working on algorithms for the
simulation of free surface flows.

U. Rüde is Professor at the Univer-
sity of Erlangen and head of the de-
partment for system simulation. He
currently serves as editor-in-chief
for the SIAM J. Scientific Comput-
ing. He is a member of the edi-
torial boards of International Jour-
nal of Parallel and Emergent Dis-
tributed Systems , and the Inter-
national Journal of Computational
Science and Engineering (IJCSE).

