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Abstract In this paper we will present an algorithm to per
form free surface flow simulations with the lattice Boltz
mann method (LBM) on adaptive grids. This reduces the r
quired computational time by more than a factor of three fc {
simulations with large volumes of fluid. To achieve this, th §&
simulation of large fluid regions is performed with coarse
grid resolutions. We have developed a set of rules to dynai _E ; /
ically adapt the coarse regions to the movement of the frifii ’ <
surface, while ensuring the consistency of all grids. Ferth g 1 aAn example of a free surface
more, the free surface treatmentis combined with a Smagafihod described in this paper.

sky turbulence model and a technique for adaptive time steps

to ensure stable simulations. The method is validated by

comparing the position of the free surface with an uncoafsroblematic to ensure stability and reasonable computatio
ened simulation. It yields speedup factors of up to 3.85 fottines for complex flows.

simulation with a resolution of 48cells and three coarser  Our fluid simulation uses thiattice Boltzmann method

grid levels, and thus enables _efficient a_nd stable_ simulatiq|_BM) which can efficiently handle irregular fluid geome-
of free surface flows, e.g. for highly detailed physicallgéd tries and topologies [11,34]. In contrast to solvers that di

simulation created with the

animations of fluids. rectly compute solutions for the discretized Navier-Stoke
Keywords Free surface flowsPhysically based animation €9uations, the LBM is a form of cellular automaton. It re-
Adaptive grids Lattice Boltzmann method laxes the incompressibility criterion and thus does not re-

quire an additional step to compute the pressure with an it-
erative method such as a multi-grid solver [53,5], or a pres-
sure projection step [39,26]. Free surface fluids can also be
1 Introduction computed with an approach known as smoothed particle hy-
drodynamics [29,30], which does not require a fixed grid

Free surface flows are important for a variety of applicatjor2nd computes the fluid properties by computation kernels
such as the optimization of production processes for foafigfined on particle neighborhoods. The LBM, however, is
ing or casting [23], the research of bubble formation regiméteresting due to the simple nature of the basic algorithm
[4] or for applications in civil engineering such as certaignd its high efficiency. These properties of the algorithm
types of fluid structure interactions [27]. It is furtherraor Make it possible to e.g. perform interactive fluid simulasio

of importance for physically based animations in computé?1], or adapt it to other problems [10,6,50]. The algorithm
graphics, as a realistic fluid motion is hard to achieve withothat we will present in this paper is based on the free surface
relying on the equations that govern its motion. However, f@!gorithm that was developed to simulate metal foams [43].

all simulation problems that appear in these cases it is stii'€ approach is similar to volume-of-fluid methods, that are
often used in cases where mass conservation has to be guar-

N. Thurey, U. Rude anteed [17,41]. It furthermore does not require a simutatio
University of Erlangen-Nuremberg of the gas phase, and thus saves significant amounts of work
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ferent models that can be used. We apply@Bi3€19model
with 19 velocity vectors in three dimensions, as it was shown
to have good numerical properties. For two dimensions, the
D2Q9 model with nine velocities is commonly used. For
clarity the following illustrations will be based on this oh&l,
while the simulations themselves are performed in three di-
mensions. The velocity vectoes, ..eg of the D2Q9 model,

i 2 andey,..e;g of the D3Q19 model are shown in Fig. 3. For
Fig. 2 Apartfrom physically based animations, the simulation etah each velocity vector a particle distribution fgncnon_ (DE).
foaming processes is another possible application of thtaads pre- Stored. A DFf; represents an amount of fluid moving with

sented in this paper. To the left, an actual metal foam sacwiebe the velocityg. The velocities of the D3Q19 model are
seen, while the right picture shows a foaming simulatiorfqrared
with LBM in cooperation with C. Kdrnen{y TMErlangen). ee= (0,0, O)T,

e.7= (£1,0,0)7,(0,+1,07,(0,0,+1)T,

(
time step and the standard approach to LBM simulations ogs 11 = (£+1,+1, O)T,
multiple grlds_. Afterwards we will dlscus§ how to comblne 15— (0,+1,+1)7 and
these extensions and present our adaptive coarsening algjc% ’ T
rithm. The goal of our approach is to efficiently compute thé€s,...19 = (£1,0,£1)". (1)
motion of the free surface. Thus, our criterion for coamsgni . ; . ;
is given by the distance to the free surface. As we consid-lér}uS there are particles not moving at i, moving with

- - . ; : : ' .speed 1 {,, .. f7) and moving with speed’2 (fg, .., f19). In
the algorithm to optimize & given simulation with a fine gm?r?e f0||0V\(l?lz] 7{21 DF with SL?bscripifsvill d(;;n(otgé tvhégzlalue
resolution, we will in the following refer to it as eoars- 9,

eningalgorithm, although it also requires the refinement cg?om the fe."efﬁe_ d'reth'On of afDF Wk'&h sut()jsct:umrusqh: f
regions, to account for the movement of the free surface®" For simplicity, the size of a celix and the length o
In Section 4, the accuracy of our method will be validate%itlme _ster_At both are no_rmallzeq tolin Iatt_|ce units. Th_e
with an error metric that measures the difference of two frggrmallzatlon procedure is explained below in more detail.

surface positions. Afterwards we will present performance The basic LBM consists of two steps, the stream-and the

measurements for two different simulation setups with var?sou'q(;St%pl':An Zvel—?e”riwtr?é tgter;;vg'ﬁtegiem Ezer;;ggrzlttsh?]e
ing grid resolutions. Moreover, visualizations of thesasi given in Fig. 4. Ing step rep

lations with raytracing will be shown advection of the particles in the fluid. Post-streaming BFs
’ thus can be written as:

f/(x,t +At) = fi(x — Atg,t). )

As Ax and At are both equal to one this results in copying
The LBM was derived from the lattice gas methods and ¢ ﬁ‘Ch DFtoits adja_cent ce_II along the correspondmg veloc-
ity vector. The particle collisions that take place durihg t

be regarded as a first order explicit discretization of thikZBo movement of the particles in the fluid are represented by re-

mann equation discretized in phase space. Currently th : . . .
are two different ways of showing that this discretizatio%)?mg the post-streaming DFs o_f_a_cell W.'th _densmand
luid velocity u towards the equilibrium distribution func-

approximates th&lavier-Stokeg¢NS) equations — either by ion:
the method of Chapman-Enskog expansion from statistit Q"
physics [9], or by direct discretization of the Boltzmanmag ceq _ . 852 9

tion [15]. A more detailed overview of the basic algorithmf' = Wi |p+3a-u utt5(@-u)), (3)

2 2
together with extensions and applications can be found e.qg. . .
in [40] or in [54]. V\%ere the weightsy; are:w; = 1/3 fori =1,w;, = 1/18 for

For the LBM the velocity space of the molecules or pacg-: 2,..,7, andw = 1/36 fori =8, ..,19. The macroscopic

ticles in the fluid is discretized. Hence, depending on the divid variables density and velocity are computed as the first
mension and the number of velocity directions, there are dffv0 moments of the distribution functions for each cell

2 The Lattice Boltzmann Method

19 19
pzzifi and u:zie.fi ) 4
1= 1=
] ‘ DFs of length {2 Here we use the incompressible model as described in [16],
,,,,,,,,, il > DFs of length 1 which alleviates compressibility effects of the standaciisd
‘ ‘ o DFs of length 0 [35], by using a modified equilibrium distribution function
and velocity calculation. Relaxing the DFs towards the equi

D209 D3Q19 librium is performed with the relaxation time that takes

Fig. 3 The most commonly used LBM models in two and three dl\/E‘JU_eS !n the_ range from zero to two. It is given by the ki_ne'
mensions. matic viscosity, see Eq.(8) below. The DFs for the next time
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Fig. 4 This figure gives an overview of the stream and collide stepa tell next to an obstacle.

step are then computed with the post-streaming DFs and yfields a time step ensuring that the force exerted upon each
equilibrium distribution functions, calculated usingeeity cell due to the gravitational acceleration is causing lbaa t

and density given by the post-streaming DFs, with a factorg. of compression. Givedlx' and At’, the lattice
BG4+ A = (1— @) f (.t +At) + oofieq, ) V|sc03|tyv, and relaxation time are computed as

At
with w=1/7. v:v’AX,2 ,and 1=3v+1/2. (8)

This model is explained in more detail in e.g. [16]. It is ) ) o
commonly called.BGK model due to the simplification of Likewise, the lattice acceleratinis calculated as
the particle collisions with a single relaxation time [2].35 At'2
Note that density and velocity are not changed by the c@—= of A 9)
lision process. Hence, the post-streaming DFs, the equilib

rium DFs and the post-collision DFs all give the same values | he following sections will describe extensions to the
for p andu according to Eq. (4). basic LBM described so far. We will introduce free surface

The simplest boundary conditions for LBM are no-slifandling, adaptive time step resizing, the subgrid turide
obstacles implemented with the bounce-back rule. DuriRgPde! and a grid refinement algorithm. Section 3 will then
streaming all values that would move into a wall are invertégPlain how to couple these extensions to create an efficient
and copied back to the originating cell. This is equivalént &"d stable free surface fluid simulator.
changing Eq. (2) to:

fl (x,t+At) = fy(x,1), (6) 2.1 Free Surfaces

and results in a zero tangential and normal velocity betwePr
fluid and obstacle cells. It has been shown, e.g., in [12] tqﬂ

|t2§i?gﬁigsoitsm'?'ﬂisot:;hnebzog\?grigym%eg eﬂgisn Oxmtﬁh[ierghomle partially filled interface cells are required to segiar
laxation timem)t/a.thod (MRT, [25]) that, in gontragt to the Sin_empty cells from fluid cells. Free surface boundary condi-

L L ’ ! tions are set for interface cells, which also store a fluid-fra
gle relaxation time described above, relaxes the diffdmgnt

. N . ion value, similar to volume-of-fluid methods for conven-
drodynamic moments individually. Moreover, various mo

els for higher order no-slip boundary conditions are ava jonal NS solvers [-17-]' Furthermore cell type conversiqns
able, e.g.. [28], [3], [49], and [12], as the bounce-bacesat eed to be handled if interface cells become completelyfille
e L2 LB ! ’ . or empty. The boundary conditions presented here do not
only yields first order accuracy for arbitrary obstacles.
In the following we will describe the conversion of di-

compute the gas phase as a separate fluid, but assume a vis-
mensional quantities, denoted by primed symbols, into osity difference petween gas and flu!d phase tha_t Is high
mensionless quantitiés used in the LBM. Given t’he re%_r)ough to approximate t_he_gas VeIC.JCIty hear the mteyface
] e o ith the fluid velocity. This is especially suitable for sim-
world values for viscosity’ [75], domain sizeS [m], a de- yjations with large gas regions, since these do not require
sired grid resolutiom and gravitational forcg [5] we com-  any computations. Empty cells that contain no fluid need not
pute the lattice values in the following way. For simplicitybe considered in the algorithm until they are eventually-con
we will assume thabis the length of one side of the domainyerted to interface cells as described below. An outlindef t
that should be resolved withcells. Thus, the cell size usedfree surface treatmentis given in Fig. 5 . While the VOF free
by the LBM can be computed @' = S/r. The dimensional surface model applied here was developed for the simulation
time stepAt’ is computed by limiting the compressibilityof metal foams [21], without the need to explicitly simulate
due to the gravitational force. In the following we have chahe gas phase, other multi-phase LBM approaches have been
sen a value ofc = 0.005 to keep the compressibility errordeveloped. In [14], Gunstensen et al. use a Rothmann-Keller
below half a percent. Thus, type model with differently colored sets of distributiomft
tions to simulate fluids with multiple phases. Several other
At — [ Qe - AX (7) Mmethods exist for multi-phase flows, e.g., [37], [42] or [46]
4 These have also been extended in different ways, e.g., to

track free surfaces we introduce two additional cell gzpe
erface cellsandempty cellsEmpty cells are void of fluid,
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allow for high density ratios [19]. On the other hand, in
[13], Ginzburg et al. present a free surface LBM model tha
makes use of more complicated boundary conditions, an
prescribes shear stresses at the interface. For problarhs st )
as rising bubbles, these shear stresses should be comsiderg . Calcul S ;

but in Section 5 we will focus on test cases where they cag interface Sruate fream from
be neglected. Cell Exchange Interface Cells

For the model of this paper, the movement of the free
surface is computed directly from the DFs, as these are the
values that are actually advected during the streaming step |, , , , , ,

For each interface cell we additionally store the currerdsna " ®KF A B - B :
mthat it contains. The fluid fractiosiof the cell is computed i>< |:> E{«&' |:> E;&E |:>
with the mass value as T A - S e

E(X7t) = m(x,t)/p(x,t), (10) Reconstruct Calculate Reconstruct

where cell density is computed with Eq. (4). For the massEDFs from surface DFs along
. . . . . Empty Cells Normal n Normal

exchange between two interface cells, their fluid fract®n i

taken into account to approximate the area they share at the

cell boundary: o | N . '

Elogflw

i

?
Fl@%

Amy(x,t+ At) = [f;(x+Ata,t) ~fi(xt)
E(x+Ate,t) +e(X,t)

2 (11) Perform Store DFs and
. Collision Step continue with
In order to guarantee mass conservation, the mass exchange next Cell

and the computation of the fluid fraction coefficient is sym-
metric. If the adjacent cell is a fluid cell, the mass exchang@. 5 An illustration of the steps that have to be executed for &Tin
is simplified to ace cell.

Am(X,t+At) = f(x+ Ate,t) — fi(x,t) (12)

to match the DFs that are exchanged during the streamE’l ! . ; A . X
step. For all interface cells, the valueraffor the next time eacombmed with the algorithm described in Section 3. All

step is computed by summing the mass changes of all velBES that would be streamed from empty cells are calculated
ity directions before performing the streaming step: with Eqg. (14), in addition to the DFs coming from the half
space given by the tangential plane of the fluid surface. The

19 latter step is required to balance forces on both sides of the
m(x,t+At) = m(x,t)+_ZlAm(x,t+At). (13)  fluid gas interface. A surface normalis calculated by fi-

= nite differences from the fluid fraction values. It is used to
For fluid cells, the mass is equal to their density, the fluigetermine the velocity directions coming from the gas phase
fraction beinge = 1. For empty and boundary cells, no masgalf space given by the surface normal @alvith n-g < 0).
exchange needs to be considered, as the mass exchang@dsnew set of DFs is now used to calculate the current cell
only computed according to the streaming step, and no Difénsity, and determine from the fluid fraction value whether
are streamed from or into the two latter cell types. the interface cell might have been fillegl ¢ 1) or emptied

DFs in interface cells coming from the direction of afe < 0).

empty cell during streaming must be reconstructed to ensure once the stream step including interface cell treatment
correct interface movement and a valid set of DFs for intefp,q the collide step have taken place, the cell type conver-
face cells. It is assumed, that the pressure in the gas ph&gg, of filled or emptied interface cells is carried out. Viéhil
and its density is the same as reference pressure and dgfjevious computations for the boundary conditions and the
sity of the LBM simulation, hencgg = 1. In terms of distri- 555 transfer can be computed locally for an interface cell,
bution functions, this means that for an interface cell at pghjs conversion handling requires accesses to neighboring
sition x with an empty cell afx + Ate)) the post-streaming celis. When performing a cell type conversion from inter-
DF ff is reconstructed as: face cell to empty or fluid cell, usually some excess mass
y _ seq eq s needs to be redistributed to surrounding interface cedls, a
fr(xt+ At = f7pe, u) + f;H(po, u) = fix.b). (14) the interface cells often do not end up with exaatly= p
Hereu is the velocity of the interface cell. In this form theor m= 0 at the end of a time step. Furthermore, the layer of
boundary conditions do not include effects such as surfaogerface cells must remain closed, thus fluid cells may neve
tension or bubble pressure. These could, however, be limve an empty cell neighbor. For an emptied interface cell,
cluded as a scaling factor of the two equilibrium distribati all fluid cells in its neighborhood have to be converted to in-

ctions (for details see e.g. [43] or [22]) and could thus
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terface cells. Likewise empty cells must be converted to in- As in[18], the intensity of the local strain tens®is then
terface cells when interface cells in their neighborhoogehacomputed as
become filled. Once all filled and emptied cells have been
handled, the next LBM step is performed. Further details gf 1
the algorithm can be found in, e.g., [31], where interactivge* 6C2 (\/"2+ 1&2\/ Mo pllap — V> : (16)
simulations were performed, or in [22], where validation ex
periments including surface tension were evaluated. Qyer&low the modified relaxation time is computed as
in addition to the high computational efficiency, the advan- 1
tages of the algorithm are the mainly local treatment of the = 3(v + C?S) + =. a7)
free surface boundary conditions, and the mass consemvatio 2
up to machine precision. In the following we will demon¥rom Eq. (16) it can be seen thatvill always have a pos-
strate, that the algorithm can also be used to efficiently piitive value — thus the local viscosity will be increased de-
duce high quality animations with large grid resolutions. pending on the size of the stress tensor calculated from the
non-equilibrium parts of the distribution functions of ttell
to be relaxed. This effectively removes instabilities doe t
small values ofr.

2.2 Turbulence Model

In order to simulate high Reynolds number flows with th
LBM, the basic algorithm needs to be extended as its s
bility is limited once the relaxation parameteapproaches
1/2. In the following we will apply the Smagorinsky subgri

3 Adaptive Time Steps

Jferavity driven flows such as the free surface flow of Fig. 1

turbulence model, as used in e.g. [52]. The subgrid mod@[€ usually initialized by a fluid configuration and an gravi-
as derived in [18], models the effect of subgrid scale Veﬂictahonal force. The maximum velocities are often not a prior
by modifying the viscosity according to the Reynolds stre§§0Wn, which makes it hard to parametrize LBM simula-
tensor, and can be combined with approaches such as S gnd_ often leads to unnecgssa_rlly small time steps in
[57]. The increase in stability allows the computation af tu €mPination with long computation times. The method de-

bulent flows with a relatively low grid resolution. Compareg¢fiPed in this section dynamically changes the LBM para-

to the small slowdown due to the increased complexity of tietrization according to the velocities [32]. As the size of

collision operator this usually results in a large improean € time step is not a parameter of the LBM equations it is
of efficiency. only changed when necessary due to large or small veloci-

The subgrid turbulence model applies the calculation fies. This furthermore requires a recalculation of the LBM

the local stress tensor as described in [38] to the LBM. nglaxaﬂon time and a rescalm_g of the DFS to match the new
values for pressure and velocity according to the choses tim

is simplified, since for LBM each cell already contains inafor 6. Th i that di ionl b
mation about the derivatives of the hydrodynamic variabl8&EP size. The rescaling ensures that dimensionless namber
ch as Reynolds and Froude number, remain the same after

in each DF. The magnitude of the strain rate tensor is th 1 .
used in each cell to modify the relaxation time according € change of the time step. The Mach number, on the other

the eddy viscosity. For the calculation of the modified relax and, changes due to the rescaling. This is, however, ncrit
ation time, the Smagorinsky constadiis used, for which cal for free surface flows, such as those presented in Section

we chose a value of 04. Values in this range are commoniy>: An evaluation of the effects of this Mach number change

used for LBM simulations, and were shown to yield goo an be found in [32]. In th_e following, a subscri_ptm)f/vill .

modeling of the subgrid vortices [56]. The turbulence mod note \_/aIL_Jes before the time step change, Wh”? a subscript

is integrated into the basic algorithm as described in S —nc\;’\_”“ |nd|ca_te_ \_/allugs fcl)r t_he new pararr:jetnzgélog._ S

tion 2 by adding the calculation of the modified relaxatiop Z'VGF‘ha” 'n'lt'a f5|mu at(;on setup asl fescn ﬁ In Sec-

time after the streaming step, and using this value in the ngpn 2 with a value forr and an external forcg, the time

mal collision step that was described above. step has to be reduce;d if the norm of the maximum velocity
The modified relaxation times is calculated by per- Umax €XCeeds a certain value:

forming the steps that are described in the following. First 1 ih £ 4 18

the tensoi, 5 is obtained for each cell by taking the secUmad > /&, with & = . (18)

ond moment of the non-equilibrium parts of the distributiowe use 16 as the velocity threshold, as it is the half ¢iB1.

functions with at which point the equilibrium DFs according to Eq. (3) can

19 R become negative. If EQ. (18) holds, the new time step size is
Map= _Zeiaelg (fi— 79, (15) given by
=
Atn - EAto, (19)

where we have used the notation from [18]. Tluand 3
each run over the three spatial dimensions, wiigethe in-  whereAt,, the old step size is initially equal to 1. Once the
dex of the respective velocity vector for the D3Q19 modelfluid slows down, the time step could be increased again to
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. . TR W Fluid cail 2.4 Grid Refinement

* * , : 7 o } M Interface Cell
3 e e gmensercer, I [8], Filippova et al. developed an algorithm to couple

* H * = e & 1 from Fine Grid . . . . .

NG 1 s pasees [ ranster el LBM simulations of different resolutions. The coupling of
i * HEee i with interpolation - the different grids is done by setting boundary conditions
'} ETT f C ”’ . . . - -

Actual Level Lovel 2 Level 1 Lovel 0 D e e i f_or adjacent grids in transfer_ cells. This transfer of infiar _
Positions (Coarse) (Middle) (Fine) tion between the grids requires a rescaling of the DFs sim-

Fig. 6 This picture shows an example of a coarsened fluid region n(%lé:}r tO_ Eq. (24). In addltlon, the values have to be mterp_o-
the free surf ace with 2 levels of coarser grids. To the ladtttansfer ated in space and time for the transfer from coarse to fine

cell layers for coupling adjacent levels can be seen. grids. This approach is usually used to refine a simulation
grid around regions of interest, to save computational time
by using a fine grid in this region only, or alternatively te in

to Atn = Ato/&. As for LBM the value ofr also depends on crease the accuracy of the computation by refining the grid

the size of the time step, it changes according to: in important regions. E.g., two-phase simulations with MRT
1 1 . using the model from [14] in combination with adaptive grid
h=%{l—5 |15 with s = Aty /Ato. (20)  refinement have been demonstrated by Télke et al. in [45].

. . Below, we will use a rescaling similar to the one presented
The new acceleration for a LBM step is then calculated as, [45]. Grid refinement has also been used in [54] to com-
On = §go ) (21) pute simulations of an airfoil on a grid with refined blocks.
Rohde recently proposed an alternative approach for grid re
fiRement with LBM, see [36] for details. However, since this
method requires an additional filtering step to ensure Istabi
i(tey, our work is based on the algorithm described in [8].
Fig. 6 illustrates how the transfer between a fine and a
coarse grid is realized. In the following,and f subscripts
Pn = % (Po — Pmed) + Pmed and will denote variables on the coarse and fine grids, respec-
Un = & Uo, (22) tively. Hence, the DH¢; is a coarse grid distribution func-
tion for the direction of the velocity vecter, with f¢; being
its counterpart on the fine grid. As can be seen in Fig. 6, the
grid spacingAx. andAt; on the coarse grid are twice those
of the fine grid. According to Eg. (8) this means that the
relaxation time needs to be calculated with the correspond-
ing parameters for each grid. Reformulating Eq. (8) using

To account for the new time step size, the velocity and al
the density deviation from the median dengityeq have to
be rescaled for each cell. Hence, after calculatingndug
with Eq. (4) for an interface or fluid cell, the new values ar
computed with:

where the median densipneq is calculated from the total
fluid volumeV and the total mas®l aspmeq=V /M. The
total volume is calculated by summing the valueg aver
all cells, whileM is the sum of all masses. The fill fractio
and mass of interface cells are given by:

My, = Me(Po/Pn) and Axc = 24X, the relaxation time for the coarse grid is calcu-
& = h/pn (23) latedby

The non-equilibrium parts of the DFs determine the re- _ :—L(rf B 3_L) +3_L (26)
laxation towards equilibrium state according to the relax® 2 2’ 2

ation timet. Whent changes with the changing time stefy, Fig. 6 two kinds of transfer cells are shown: one for trans-
size, the fluid behavior should not be influenced by this rgsy from fine to the coarse grid, and vice versa. Due to the
parametrization. Therefore the non-equilibrium partstav arrangement of the grids, the fine grid cells lie at the same
be rescaled in a way that is similar to the rescaling pro@dyysition as the coarse grid nodes, thus data for a cell of the
for grid refinement from [8]. Furthermore, the rescaled DRg)arse grid transfer cells is taken directly from the corre-
have to match the new macroscopic quantities for velocighonding fine grid cell. As the macroscopic properties such
vn and pressure deviatiqoy. DFs f" for the new time step 45 pressure and velocity of the fluid are the same on both
size are calculated with: grids, these are not changed during the transfer. However,
' = s [fieq(po,uo)JrST (fi — fieq(Po,Uo))], (24) due to the different relaxation times, the non-equilibrium

wheres; ands; are calculated as follows: parts of the DFs have to be rescaled with

. 27,
St = 15%pntn) / %00} for = ffesoe [t - 15w = 5. @)

St = &(Tn / To)- (25) : o ;
The rescaling procedure to change the time step size requHere we use rescaling factors similar to those proposed in

; . .JEFS], instead of those from [8], as the latter ones have a sin-
roughly the same computational effort as a normal collisi nLtJIarity for T = 1. For a transfer in the other direction, from

step. As it is performed seldom in comparison to the num ' .
of LBM steps, it usually requires ca. 1% of the overall cortrj?:he coarse to the fine grid, Eq. (27) becomes

putation time, however, it can reduce the overall number
time steps significantly.

f_ fea o] ithspe= & =
?f7| - fC,i +Sfc |:fC,I fCI:| 5 Wlth SfC - SCf - 2'[f . (28)
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Leveln © 05> 0, 7> O—7 ©—>0 —>0—>0—> 0>
- ¢ @
Grid (ot T O ot ‘ 2at - 24t >
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Consistent
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Fig. 7 Here the effect of the different time step sizes for multglaulation grids is shown. The numbers indicate the ordevtiich the steps
are performed. Dashed arrows indicate interpolation, evtitaight arrows from one circle to another represent LB&pstith the indicated
time step length.

Note that the rescaling for transfer cells is performedraftalso requires a subsequent refinement of initially coasene
collision on both grids. Thus, the DFs are only streamed oegions, once the free surface moves there during the course
the fine destination grid, while no collision is necessasy, af the simulation.
the DFs are overwritten directly afterwards with DFs from
the coarse grid again.
Likewise, fine grid transfer cells (marked with a filled3.1 Turbulence Model
downward arrow) again lie at the same positions as coarse
grid cells, thus their DFs are transferred directly with &). The free surface extension of Section 2.1 and the subgrid
However, especially in three dimensions, most of the fiRodel of Section 2.2 can be combined directly. The turbu-
grld transfer cells are those marked with an outlined dOW[@-nce model differs from approaches such as MRT since it
ward arrow. For these, the information from the coarse grifhes not change the equilibrium DFs. Furthermore, the free
has to be interpolated spatially. Hence, instead of thee@lsurface equations in Section 2.1 are independent of the lat-
fei and f;' of Eq. (27), the DFs of the coarse grid are firsfice viscosity. Thus, the boundary conditions and masktrac
interpolated to compute the corresponding values at the aeg formulas remain valid. The stability of the turbulence
sition of the fine grid cell. As described in e.g. [54], a setormodel is transferred directly to the free surface simuketjo
order interpolation is usually performed spatially. hence enabling the computation of free surface flows with
In addition to saving operations by reducing the totigh Reynolds numbers, and values oftlose to 05. A
number of computational cells, the number of time steps it@maining source of instability, however, is the problem of
be performed on coarser grids is reduced, since each tifligd velocities becoming too large during the course of the
step on a coarse grid is twice as large as that of the nekhulation.
finer grid. Thus for two fine grid LBM steps, only a single
one has to be performed on the coarse grid. This, however,
means that for one of the two fine grid LBM steps, the grig 2 adaptive Time Steps
transfer also has to include temporal interpolation of first
second order. An overview of the basic time step scheme e adaptive time step procedure from Section 2.3 can be
atotal of three coupled grids is given in Fig. 7. used in order to avoid too large time steps causing instabil-
ities. When the size of the time step is reduced to simulate
. ) . large velocities, the value afbecomes smaller according to
3 Adaptive Coarsening Algorithm Eq. (20). Instabilities due to being almost & are allevi-
l%ed by applying the turbulence model. This in turn requires

In this paper we take the view that the simulation is defin
by a global uniform fine grid, that can be augmented wi
auxiliary coarser grids to accelerate the computation ket t

orice of a possibly reduced accuracy. Thi¥aptive coars- With Eq. (20), the lattice viscositiag, andv,, for the old
eningwill be described in the following paragraphs. We wil nd the new time step are calculated. Eq. (15), (16) and (17)

: : ..can then be used to compute the modified local relaxation
explain how to combine the free surface LBM method wi mes for each cellrs, and Tso, With vy and ve. Eq. (24)

the turbulence model and the adaptive time steps describeos; pe modified to include the local relaxation time from

above. Aft_erwards we will s_hovy how to ada_pt|vely perfor e turbulence model. This is done by calculating the sgalin
a coarsening of the fine grid simulation using a set of cdctors, using the local relaxation times as

flag based rules, and how to ensure stability of the trans-
fer between the different grid levels. Note that this apphoas; = s(Tsn / Tso)- (29)

modification of Eq. (24), as the non-equilibrium scaling of
e adaptive time steps depends on the relaxationtime
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To-Fine: used to interpolate
from-coarse transfer cells.

From-Fine: transferred
from the adjacent fine grid.

Combining the turbulence model and the adaptive time Steyf | Fuid: valid fuid cells
in this way enables the simulation of high velocities Withou — |, . ... vot inctudea
stability problems. Nevertheless, small time steps requirt—! in the simulation.
more LBM steps to compute the solution. ) _ ) _

The following section will demonstrate how to combin&'9- 8 Cell types for the adaptive coarsening algorithm.
the techniques presented so far with an algorithm to adap-

tively coarsen the computational grid inside of the fluid daspssible to perform some computations of the passes in par-

main with the goal of reducing the computational effort reyjje| put they only take a small part of the overall computa-

quired for each LBM step. This is an important componegbng time, as will be explained in more detail in Section 5.

for a stable and highly efficient LBM free surface fluid SiMHence, we have decided to explain and implement each pass

ulator. as a separate sweep over the cell flags. In the following, we
will distinguish the five cell types shown in Fig. 8:

— Fluid: these are valid fluid cells treated as described in
Section 2. They are not interpolated or used for interpo-
lation.

Unused these cells are not included in the simulation

From-Coarse: transferred
from the next coarser grid.

3.3 Adaptively Coarsened Grids

For dynamic problems, such as free surface flows or flows
with moving obstacles, the techniques described in Se2tibn™ ~. . .
cannot be applied without modifications. In [7] and [24] an ﬁ'mé'af to the empty cells that represent regions without
algorithm based on the work of Filippova et al. is used to_ FlrJolrﬁ-Fine DFs for these cells are transferred from the
increase the accuracy of a simulation by adaptively refin- di £ id
ing the grid around an obstacle or a bubble in the fluid. As adgjacentfine gr_lk. . ¢ qf h
this work is focused on the simulation of free surface flows" Frortn-Coarse L!deW|se,_bIZ|)Fs .3}“.3 ttransl e;re rom the
such as those of Fig. 1, the region of interest, that needs to 'rll'gf(Fi%Zatrﬁs TDans o(fpt(r)lzssle c):/e\?ll; arlg Sgpe(():i ?ol?nr%r olate the
be accurately computed is the free surface itself. Hence, we from-coarse transfer cells on the finer level D?mn the
perform the simulation of this surface on a fine computa- _. . A 9
tional grid, while the accuracy of the computation inside of simulation they are treated as normal fluid cells.
the fluid may be less important. In the following we will de-  The following rules are applied to all coarse levels. For
scribe an approach to adaptively coarsen the grid insidetbé first level of coarsening, we ensure that the coarsened
large fluid regions by dynamically changing a set of coarseagion keeps a distance of one cell layer to the free surface,
grids according to the movement of the surface on the fimdile subsequent coarsened levels ensure that they keep a
grid. The criterion for coarsening is thus given by the diglistance to the restriction region of the next finer level. In
tance of a cell to the free surface. An alternative would be ti@e following explanation we can therefore focus foom-
allow also the coarsening of e.g. smooth free surface regidine andto-finecells, which are equivalent to interface cells
with few details. However, this would cause problems for tHer the finest coarse level. Due to the alignment of grids as
mass conservation with the mass flux given by Eq. (11) adéscribed in Section 2.4. the fine grid neighbpof a coarse
make generating a triangulated surface more complicatedrid cell ¢ at position(i, j, k) is obtained by accessing cell

We thus ensure that all interface cells are treated on tt#, 2j,2k) on the fine level.
finest grid. Likewise, obstacle boundaries are calculated o Pass 1:During the first passfom-finetransfer cells on
the finest grid. Similar to the notation used in multi-grid li the coarse grid are checked for consistency. They are re-
erature [47], we will denote the fine to coarse grid transferoved if the fine grid cell is not used for interpolation to
with restrictionand the coarse to fine grid transfer witto- ~ a finer grid itself. Thus, its is afrom-fineor to-finecell, ¢
longationin the following sections. is converted to an unused cell. In this case fluid cells in the
neighborhood o€, have to be converted infeom-finecells,
to ensure a closed transfer cell layer.

Pass 2:The second pass checks whether there are any

To adapt the coarse grids to the movement of the free Stdﬂnecessarsrom—coarsa:elIs. Itonly affects the coarse grid

face, while keeping the transfer cell layers consistent, we

3.3.1 Boundary Cell Conversion

have developed a set of rules to determine when to refine or Previous changes Current Pass 1 Pass 1 changes
coarsen a _grid (egion. The.handling of the ad_aptive coas- |y [# v [ . v ol
ening requires five passes in total, each of which, however, [, g [¢ « ool Jel |

v Jdelele

checks, a cell and its neighborhood, together with the neigh
borhood of the cell on the next finer grid, are necessary. The®
first three passes handle refining the coarse fluid regians, &€,

when the free surface comes near the coarsened grid regio
while passes four and five handle coarsening fluid regions
where the free surfaces has moved away from. It would big. 9 Pass 1.

only applies to a single type of transfer cell. For these fla& 1 Tele . Tele .

“ ||

| | o] | |
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Fig. 10 Pass 2. € e e -
Fig. 12 Pass 4.

layer. One of these cells can be converted to a fluid cell when
there are no unused cells in its neighborhood. Hence, e valid fluid cells, nofrom-fine or to-fine transfer cells.
transfer cell is not required in the prolongation regiorkd-i Furthermore, the neighborhood of tfrem-finecell on the
wise, afrom-coarsecell can be turned to unused, if none ooarse level must not contain any unused cells. If these-crit
its neighbors are fluid cells. A special case fiam-coarse ria are met, thérom-finecell is turned into a fluid cell. Due
cellsis necessary to prevent a double transfer betwees. grid the previous checks, its neighborhood is already valid. A
It is not desirable to to have twivom-coarsecells at the terwards, all fine grid cells lying between the coarse grid
same position on different grids. Thus fofram-coarsecell cell and its neighbors have to be checked to reinitialize the
Ce, it has to be checked whethey is afrom-coarsecell as  from-coarsetransfer cell layer. Fine grid cells in the center
well. If this is the casecc has to be converted into a fluidof eight valid fluid coarse grid cells are directly turnedoint
cell, reinitializing its neighborhood to keep a closed lege unused cells. Fine grid cells lying between fluid cells on the
from-coarsecells. coarse grid have to be converteditom-coarsecells, while
Pass 3:After this, from-fine cells are checked for conremainingfrom-coarsecells without fluid neighbors are re-
version to fluid cells. This has to be done when the correroved from the simulation by setting them to unused.
sponding fine grid cell is &#om-coarsecell, meaning that Although the cell conversion does require 5 passes in to-
the finer grid transfer layer has moved away from the preal, the neighborhood checks are confined to small regions
longation transfer layer on the coarse grid. In consequenas we apply linear instead of second-order spatial intarpol
thefrom-coarsetransfer cell layer of the finer grid has to beion for the prolongation. This is essential for the simplic
updated, turningrom-coarseand fluid cells in the fluid re- ity and efficiency of the conversion rules, as irregulasitié
gion of the coarser grid into unused cells, and adding nefe coarse grid transfer layer for the free surface would oth
from-coarsecells at the moved border. erwise require checks in large neighborhoods of fthen-
These three passes are enough to ensure a refinemenbafsetransfer cells. In Section 4 we will provide evidence
coarsened regions when there is an inward movement of that the accuracy of the linear interpolation is computatio
free surface and the prolongation regions. The following tvally sufficient by comparing it directly to a second order in-
passes are similarly used to handle moving the restriction terpolation.
gions outwards, once the free surface moves away from it.
Thus, passes four and five handle coarsening the compwas > rid Transfer
tional grid.

Pass 4:For the coarsening it is first necessary to checihese conversion rules are checked before each coarse grid
whether an empty cell is a candidate fofram-finetrans- | BM step. They are enough to ensure a valid and closed
fer. This is the case if its fine grid neighbor is a valid fluigayer for both restriction and prolongation. As direct gan
cell, and not afrom-fineor to-fine cell. The empty cell is fers across multiple grid levels are prevented, and the re-
then turned into &rom-finetransfer cell and initialized by a striction transfer layer of first coarsened level does ngeco
transfer of the DFs from the fine grid. interface cells, the resulting simulation regions ususfign

Pass 5:The last pass thus checks whethefran-fine 2.3 fluid cells between their transfer layers. After adaptin
cell can be converted into a fluid cell, coarsening the reéhe grid, restriction and prolongation are performed to set
gion around it. This is possible when all fine grid neighborsorrect boundary conditions for the actual LBM step.

Previous Changes Current Pass 3 Pass 3 changes Previous Ehﬁnges Current Pass 5 Pass 5 changes
2 2 ; :
: &+ N . e : |elele] eolele] | +[e|e
()
& I®lv|v |y 0|0|’{v L i b A RAR e [v|®|® V| ARA
— S —
S lelelele v LR AR S [sl+|®l® . v v | ®le . ele
v v Y[
2 v 2 = j vl: s B 1]
b S v I[¥ v[v[¥] s ¥ 2 v
o =1 < v ¥ ! ¥
= I i = V¥ [¥ ¥V i 2]

Fig. 11 Pass 3. Fig. 13 Pass 5.
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2D Simulation 3D Simulation

The transfer of DFs on the boundaries is done by includ-
ing the modified relaxation time of the turbulence model in
Eq. (27). After interpolation of the DFs, the modified relax-
ation timesrsc andts are calculated with Eq. (27) using the
viscositiesy; andvs, respectively. Finally, the scaling factor
st is calculated with

°

Average Fill Fraction Deviation
Average Fill Fraction Deviation

1 21, ]
St =(——-1)=—". (30) "
TSC TSf . coarse simulation
and used instead of Eq. (27) with Eq. (27) and Eg. (28). Fstlon

A remaining problem of the algorithm discussed so far ) _ _
is, that simulations with low viscosities are disturbed by aFig- 15 Accuracy measurement for the interpolation test case with
. . . static coarsening.
tifacts that are caused by the overlapping grids. An exam-
ple of this problem can be seen in Fig. 14. The artifacts are
caused by pressure fluctuations near obstacles and becﬂ%lidation
noticeable as self-reinforcing patterns at the grid botieda
that cause strong disturbances of the flow field. The pr
lem here is, that according to the description of Section
the restriction is done using a single fine grid cell, analsgo
to injectionin a multi-grid algorithm. The resulting infor-
mation is used on the coarse grid, and during the subseq
steps propagated to the fine grid again two cells furtherdn t X . - .
fluid region at thefrom-finetransfer cells. To break up this . If the configurations are completely different, ésue

pattern of information flow, we use a restriction that také’g'” _T)e clr?se tof(?[ﬂe,ﬂvv_r:jllev\\//alues cllqse ttr? zero indicate ?
into account all fine grid cells within the fine grid neigh—Slml arshape ot the fluid. e normaiize the measurements

borhood of a coarse grid cell, as shown on the right si é(.the tOtal. number. of measured points to compare simu-
tions of different sizes, and average the measurements at

of Fig. 14 for a two dimensional example. Thus, the cel Herent times during the course of the simulation. The val
that were previously not taken into account for the restri ! ! uring u imuiation. v

tion also contribute to the coarse grid transfer cells. Rer jues shown in Fig. 15 and Fig. 16 are thus computed as
terpolation a simple gauss kernel gives good results. Thus, 1 1 ol

g&le accuracy of the different grid transfer methods will be
determined by comparing, which is the average deviation
of the fluid fraction values over all cells. The fluid fraction

iation measurement effectively compares the diffezenc
ﬁ e position of the free surface for two given configura-
ion

the interpolated DF$; ; to use with Eq. (28) are calculateds’ = — Z Z l&ref(X,t) — (X, )], (33)
as ' total Mtotal &1 xE0
19 W whereget are the fluid fraction values of the corresponding

frio = _Zl fri(x+Atey) (31)  fine-resolution reference simulatiof, s the size of the do-
=

Whotal main ranging from 0 to 1 in each spatial dimension, &gl
with is the number of timesteps to average over. Likewiggy
19 is the total number of chosen points whetés measured at.
wj = e lel e 23w = z W (32) For Fig. 15 the grid resolution of the reference simulation
j=1 was used to set the number of measurement points. Note

t& in contrast to e.g. error metrics from the multi grid
iterature does not measure the error caused by repregentin
the problem on a coarser grid, but only the position of the
éree surface.

The following test cases were parametrized to represent
) ) a cubic domain of Am length with water and earth gravity.

1. Start with coarsest grid level. Hence, we chose’ = 10°° [m?/g and an acceleration of

2. Adapt the grid: g = (0,-9.81,0)T [m/s?).
(a) perform refinement passes 1,2 and 3,
(b) perform coarsening passes 4,5.

3. Set the boundary conditions with restriction and prolo
gation.

4. Perform the LBM step (for the finest level this include
handling the free surface).

5. Continue with the next finer grid.

This interpolation requires more accesses to fine grid D
for restriction, but effectively prevents the developmeht
the artifacts described above.

In conclusion, our algorithm proceeds with the followin
steps for all levels that are advanced at a given time:

Y1 Test case with static coarsening

Fhe different interpolation methods will be tested with a
setup of a drop falling into a standing fluid, similar to Fig. 1
The lower half of the domain is statically coarsened. Dur-
We will evaluate the accuracy of both the interpolation sebeng the course of the simulation the free surface keeps a
and the adaptive coarsening algorithm in the following sedistance of several cells to the coarsened region, hence the
tion. coarse cells grids do not have to be changed. Fig. 15 shows
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Step 1 Step 500 Step 650 Fine Grid Coarse Grid

Prolongation without
without ; - Interpolation
Interpolation . (Injection)
Prolongation B — with

with - 104 Interpolation
Interpolation - - using Eq. (33)

Fig. 14 Example of artifacts that occur for a simple standing fluit tase with a resolution of 12&nd two coarse levels. Each picture shows
the density distribution in the lower left corner of the fluighere green values indicate= 1.0 while a red color indicates larger values. The
upper row of pictures was created without any interpolattrthe prolongation, while the lower row makes use of Eq)(31

results in two and three dimensions, to the left and rightterpolation, it would, however, require 4, 16 and 64 DF ac-
respectively, each for three grid resolutions. The refegencesses, respectively. For the test case described abdve wit
simulation is a simulation run on an uncoarsened grid withgrid resolution of 128this means, that on average only
the shown resolution. The coarsened simulation is run thr&g0773 DFs have to be accessed and interpolated for method
times with the following interpolation methods: A, instead of 363253 for interpolation method B.

A) without temporal interpolation and with linear spatia i
terpolation, ) ) )
B) without temporal interpolation and with second order-sgh2 Test case with dynamic coarsening
tial interpolation,

C) with linear temporal and second order spatial interpold0 Vvalidate the accuracy of the adaptive coarsening tech-
tion. nique described in Section 3 we have used a breaking liquid

column setup similar to Fig 20. The domain is filled with a

Each of these runs was performed with two levels of coariggion of fluid in the lower left corner, taking up a quarter
ening, one with halved, and the coarsest one with 25% of thethe domain volume. The gravity causes the fluid to splash
original resolution. For reference, the simulation is also back and forth, which makes constant updates of the coars-
once on a grid with half the shown resolution (referenced afed region necessary.
coarsein the following). Accuracy measurements &f computed with Eq. (33)

Throughout the runs it can be seen, that the adaptivglie shown in Fig. 16. Here again a coarse simulation with
coarsened simulations are significantly more accurate thaf the shown resolution and an adaptively coarsened simu-
the one run with halved resolution. Furthermore, there |igtion (using interpolation method A) are compared to a sim-
only a slight difference between the different interpaati ylation run on a homogeneously fine grid. It can be seen, that
variants. The interpolation method C is the most accuraife accuracy of the adaptive simulations is slightly lessith
one, as was expected. The other two, however, only sheyyse of the previous test case. However, throughout thee run
small decreases in accuracy. This can be attributed to ey are more accurate than the coarse simulation, while re-
fact, that for the coarsened grids, the free surface and #igring significantly less LBM cells than the fine simulation
obstacles are still calculated on the finest grid everywheggd yielding the same amount of surface details. The fol-

These regions determine the overall motion of the fluid. Th!.tﬁ,vmg section will show several examp|es of detailed sim-
in contrast to test cases such as [55], the coupling with the

coarser grids is sufficiently accurate without the temporal

interpolation, and more importantly, without second order 2D Simulation 3 Simulation
spatial interpolation. Former allows us to use the grid com-
pression technique [33] on all grids, as only a single time 5o
step needs to be stored in memory. It also saves one thirc I
of the total memory accesses that are required to interpo-§°~
late the coarse grid DFs to the fine grid, as for each secondt
interpolation step the temporal interpolation would regui
access of two DFs instead of one. The linear spatial interpo-* | |
lation greatly simplifies the handling of the grid adaptiyit P iareoton * cnaresouton
and significantly reduces the number of memory accesses.
For linear interpolation, fine grid cells that lie betweer2,
and 8 coarse grid cells require the same number of DF &@y. 16 Accuracy measurement for the dynamic test case with the
cesses for each interpolated one. With second order spagtgptive coarsening.

0.015

0.0104-

0.0075+ 0.0051-

Average Fill Fraction Deviation

erage

g

A

[l coarse simulation [H simulation with 2 adaptively coarsened grids
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.. . . . . Falling Drop Simulation 120° Breaking Dam Simulation 1203
Table 1 Workload distribution for an typical simulation.

a
3

80 1+

a
&

E E
Procedure Workload percentage g g
Fine grid LBM steps 73.46% £ 5 2wl
Adaptive coarsening 14.27% 3 3
LBM steps of all coarse grids 7.25% 8 15 8 204
Other code 5.02%

0 1 2 3 0 1 2 3
Coarse Levels Coarse Levels

Fig. 18 Performance for a resolution of 12@n a single Pentium4

ulations and illustrate the speedup that can be achieveddRUJ with 3.2GHz.
adaptive coarsening.

Falling Drop Simulation 4803 Breaking Dam Simulation 480°
; 32 1

5 Results and Performance

12

Total Computation Time [h]
Total Computation Time [h]

Before analyzing the overall performance, it is important t
know how the workload is distributed between the different ) S ———
parts of the algorithm. We have therefore profiled a run of Coarse Levels Coarse Levels
the test case shown in Fig. 17 with a resolution of 286d Fig. 19 Performance with OpenMP parallelization for a resolutién o
three coarse levels. . o 480° on a four-way Opteron node (each CPU with 2.2GHz).
As can be seen in Table 1, the majority of the compu-
tations are necessary for advancing the finest grid and com-
puting the free surface boundary conditions. The adaptive Fig. 17 (A), the impingement of a falling drop on a fluid
coarsening itself requires more computational effort tiien surface, and
LBM steps on the coarse grids themselves. This is due to the Fig. 20 (B), the breaking of a column of liquid.
fact that the coarse grids usually only contain relatively f
fluid cells, and the adaptive coarsening includes the cal
lation of the grid transfer which for a single cell requir
computations similar to a normal LBM cell update.
Usually, the performance of LBM programs is measur
with the number of cell updates per secohtl:SUPS(mil-
lion lattice site updates per second). However, this is ngt
valid anymore once adaptive grid resolutions are involired.

?h'g case, itis crucial how much gastgr the fl’V‘?fa“ SIMORL yeen 4 characteristic lengthtimes velocityv and the vis-
is done in comparison to a standard simulation using a Sjflcin Re— L /), while the Froude number relates the ve-

gle grid level. The following tables shows several MLSUPR .itv t0 the gravity and water heiakt (Er — H). Note
measurements only to illustrate the performance of our igy; "y gravity w ight ( v//gH).

. : : . : at the high Reynolds numbers are the result of the chosen
plementation without adaptive coarsening for a fallingedrqjse osity of water, which is close to zero. These parametriz
test case as shown in Fig. 17.

o ) i tions clearly represent the upper limits of this method. As
_ Table 2 shows that our basic implementation yieldsge primary goal of these test cases was the measurement of
high performance on different CPU architectures. This {§e performance of the adaptive coarsening, these parame-
important, as a poor implementation of the basic algorith@gs'\vere chosen to test the limits of stability of the algo-
might yield larger speedups when combined with our ad _
tive coarsening technique — even when the overall perfor- |, Fig 18 the performance for the relatively small res-
mance would still be low. In the following we will demon-q,tion of 126 on a Pentium4 CPU with 3.2GHz is visi-
strate the achievable speedups with the test cases showny For test case A speed up of c&6 B achieved once the
first coarsened level is used. Due to the small size of the do-
_ _main, additional levels of coarsening do not yield a further
Table 2 Performance measurements of the basic free surface S'mtgf)'eedup Similarly for test case B, the first coarsened level
tion code without adaptive coarsening on different arciitees with Id ) d f he | ' d . B
up to four processors. yields a speedup of ca.@l The lower speedup in compari-
son to test case A can be attributed to the fact that test case

Both cases were run in twp different sizes: 120d 486.
Fhch graph shows the total computation time with a different
®Rumber of coarse grids. The simulation of the first bar to the

left is run only on the finest level, while the others use up to
&firee levels of adaptive coarsening.

Two dimensionless variables, the Reynolds numBey (

d the Froude numbefi() for the three test cases are shown
in Table 3. The Reynolds number represents the ratio be-

CPU MLSUPS B has a smaller volume of fluid and exhibits a larger num-
Pentium4 3.2 GHz 1.84 ber of thin fluid sheets. Hence, it is a harder problem for our
Athlon64 2.4 GHz 1.98 adaptive coarsening technique.

4-way Opteron 42.2 GHz (with OpenMP) 3.73 The performance results of Fig. 19 are for a resolution

of 480° on a four-way Opteron node with 2.2 GHz for each
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Fig. 17 Images of the falling drop simulation with a grid resolutioh 480° and the adaptive coarsening algorithm. The simulation was
parametrized to represent a basin of water with 10cm sidghen

of the four CPUs. The traversal of the finest grid was para-Conclusions & Outlook

lelized with OpenMP. As was demonstrated above, the ma-

jority of the work is done on the finest grid — thus the pakye have presented a stable method for free surface simu-

allelization is only applied to the traversal of the finestigr |ations with the LBM. It can be used to efficiently perform

level. For a simulation without adaptive coarsening, tasec simulations with large volumes of fluid and thus enables the

A now requires more than 54 million cells. The total speedigpeation of highly detailed and physically correct fluid an-

with 3 coarsened grids is& in this case, and.B6 for test jmations. This is achieved by our algorithm to adaptively

case B. In contrast to the 12€uns, more than a single levelcoarsen the simulation resolUtion inside of larger fluid-vol
of coarsening yields a further speedup for testcase A.  ymes. A set of rules is used to dynamically adapt the coars-
To allow the setup of more complicated simulation prokened regions to the movement of the free surface.
lems, and demonstrate the ability of our implementation to The combination with a subgrid turbulence model and
efficiently simulate free surface animations, we have implgn adaptive time step algorithm ensures stability of thel flui
mented an interface to the 3D softwakender Since ver- simulator. We have validated the algorithm comparing it to
sion 2.40 the free surface simulation is part of the packaggfine grid simulation for static and dynamic test cases. The
and can be obtained from [48]. It allows the productions @lerformance was evaluated with two different simulation se
high quality fluid animations as shown in Fig. 21, and wagips and various grid sizes. Depending on the architecture
used to produce the visualizations of our simulation rungnd amount of fluid in the simulation, speed up factors of

The sources for the solver including the implementation @fore than 3.5 are possible in comparison with a simulation

our adaptive coarsening algorithm were released under iea single fine grid.

GNU Public Licensgand are available on the same website. One area of future work will be to not only reduce the
computational time but also to reduce the amount of mem-
ory. In our current implementation we allocate all simuati

Table 3 Reynolds numberRg and Froude numbefF) for the three  grids throughout the computational domain. Hence, we are

test cases used in Section . The domain sizelimp’ = 10°°[m?/s planning to adaptively allocate patches in the fluid regim f

andg = (0,~9.81,0)" [m/s’]. each grid level separately. This should significantly desee

the required memory, as coarsened regions inside of the fluid

Falling Dro Breaking Dam  Filled Glass - :
g =rop g only have to store the coarsest grid level. It might, however

Ef 20&933 45(;93920 10g%%0 decrease the performance due to increased overhead of the
CIm] 0.02 0.09 0.025 patch management.

v [m/s] 10 5 4 In order to e.g. accurately resolve near wall shear layers
H [m] 0.05 0.09 0.04 of turbulent flows, the coarsening criterion could be change

to only coarsen areas with a low shear stress. Another chal-
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Fig. 20 Pictures of the breaking dam setup, again with a grid refsmiutf 48¢ and a parametrization of a 10cm domain with water.
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