
Physically based Animation of Free Surface
Flows with the Lattice Boltzmann Method

Physikalische Animation von Str ömungen mit
freien Oberfl ächen mit der

Lattice-Boltzmann-Methode

Der Technischen Fakultät der Universtität Erlangen-Nürnberg,
zur Erlangung des Grades:

Doktor-Ingenieur

Vorgelegt von:
Dipl. Inf. Nils Thürey

Erlangen, 2007

Als Dissertation genehmigt von

der Technischen Fakultät der

Universität Erlangen-Nürnberg

Tag der Einreichung: 2006-10-09

Tag der Promotion: 2007-03-13

Dekan: Prof. Dr. Winnacker

Prüfungskollegium: Prof. Dr. U. Rüde
Prof. Dr. M. Pauly
Dr. M. Breuer
Prof. Dr. M. Stamminger

ii

Abstract

The numerical simulation of fluids has become an established tool in many engineer-

ing applications. Free surface fluids represent a special case that is important for a
variety of applications. For a free surface simulation, a two phase system, such as air

and water, is described by a single fluid phase with a sharp interface and correspond-
ing boundary conditions. This allows the efficient representation and simulation of
complex problems. In this thesis, the main application for free surface flows will be

the generation of animations of liquids. Additionally, engineering applications from
material science and particle technology are considered.

The simulation algorithm of this thesis is based on the lattice Boltzmann method.
This method has been chosen due to the overall computational efficiency of the ba-
sic lattice Boltzmann algorithm, and its ability to deal with complex geometries and

topologies. The basic algorithm is extended to compute the motion of free surfaces in
three dimensions while conserving the overall mass. Adaptive time steps and grids,

in combination with a turbulence model, allow stable and efficient simulations of de-
tailed fluids. In combination with boundary conditions for moving and deforming
objects, the algorithm represents a flexible basis for free surface simulations. Its per-

formance on single CPU machines will be evaluated. Likewise, performance results of
parallelized versions will be given for shared- and distributed-memory architectures.

For fluids in computer generated animations it is important to give animators con-
trol of the fluid motion. An approach to perform this fluid control, without disturbing
the natural fluid behavior, will be given. Another typical problem is the simulation of

large open water surfaces due to the highly differing scales of waves and drops. An ex-
planation of how to perform such simulations using a combination of two-dimensional

and three-dimensional techniques will be given, in combination with a particle based
drop model. To demonstrate the capabilities of the solver that was developed during
the work on this thesis, it has been integrated into an open source 3D application.

Finally, areas of future work and possible extensions of the algorithm will be dis-
cussed. One of these topics is the inclusion of an accurate and efficient curvature com-

putation for surface tension forces. Furthermore, an outlook of possible applications
in the fields of metal foams and colloidal dispersions will be discussed.

iii

iv

Acknowledgements

First of all I would like to thank my supervisor, Ulrich Rüde, for the many helpful

discussions and the ongoing support – even when my research drifted away from en-
gineering applications towards more visually oriented topics. I am also grateful to the

people who helped me writing this thesis by proofreading parts of it: Christian Fe-
ichtinger, Bettina Frohnapfel, Jan Götz, Klaus Iglberger, Thomas Pohl, Stefan Thürey
and Ben Bergen. Especially Ben removed a significant amount of ”german-english”.

Furthermore, numerous other persons were very helpful during the course of my

work on this thesis. The many discussions with my colleagues Thomas Pohl, Jan
Treibig, Christian Feichtinger and Klaus Iglberger were certainly valuable in many

ways. Likewise Marc Stamminger, Thomas Zeiser, Frank Firsching, Anja Borsdorf,
Günther Greiner, Quirin Meyer and Vivek Buwa helped by giving me vital hints for
certain aspects of this work. Furthermore, Carolin Körner and Michael Thies were

very important by developing the foundations of the LBM free surface algorithm, and
helping me during my master thesis. Together with Thomas Pohl, who agreed to su-

pervise my master thesis in 2003, they got me started with LBM and the free surfaces.
Overall, many thanks to my colleagues at the LSS, who, among other things, helped
me getting distracted from all the bugs and instabilities, e.g., by accompanying me

to the Havanna Bar and the E-Werk. Kudos especially to those that did not use my
Müsli-milk for their coffee.

Aside from my work at the LSS, the collaboration with ETH Zurich allowed me
to work on one of the most interesting topics of this thesis – the control framework

of Section 9. Mark Pauly and Richard Keiser significantly contributed to this work,
while Markus Gross and Marc Stamminger helped to make this collaboration possible.

Thanks also to the rest of the AGG & CGL teams for making it a very enjoyable visit.

In addition, the Blender development and user community was helpful testing the
solver. Some people produced several impressive animations with it. Thanks also
to Bassam Kurdali for providing the rigged character that was used in several test

animations throughout the work on this thesis.

Finally and naturally, I want to thank the rest of my family – my parents Verena &
Stefan, my brother Arne, my sister Jana, my grandparents Hannelore, Georg and Mag-
dalena – for their encouraging comments in the last three years. They had to endure a

stream of emails with strange fluid test pictures and buggy animations (that probably
won’t stop in the near future).

This work has been supported by the Graduate College GRK-244, 3-D Image Analy-

sis and Synthesis, of the German Science Foundation (DFG).

v

Nomenclature

Note: Especially for parametrization and derivation of the simulation algorithm, all

physical values will be marked with an apostrophe. The majority of the following
equations, however, will use dimensionless lattice quantities. In the following table,
values without units are by default non-dimensional, units are only given for physical

quantities.

fi particle distribution function along an arbitrary velocity vector
fĩ distribution function along the inverse velocity vector of fi

f eq
i equilibrium distribution function
f ∗

i post collision distribution function
gi particle distribution function for a shallow water LBM
wi LB equilibrium weighting factor
m(x) fluid mass of the cell at position x

ǫ(x) fill fraction of the cell at position x

C Smagorinsky constant
P fluid pressure [N/m2]
r domain grid resolution
S ′ real world domain size [m]
T fluid temperature [◦C]
ρ fluid density [kg/m3]
∆t′ physical time step [s]
∆x′ physical cell size [m]
µ′ dynamic viscosity [m Pa/s]
ν ′ kinematic viscosity [m2/s]
λ relaxation time [s]
∆t lattice time step
∆x lattice cell size
ν lattice viscosity
τ lattice relaxation time
E fluid fraction deviation for accuracy measurements
ei velocity vector of the LB model
g gravity acceleration vector (0, 0,−9.81)T [m/s2]
u fluid velocity [m/s]
n surface normal vector
uo obstacle object velocity [m/s]
no obstacle object surface normal

R Boltzmann constant 1.380650 · 10−23 [m2 kg s−2 K−1]
Kn Knudsen number (ratio of mean free path and char. scale)
Re Reynolds number
γ energy, second hydrodynamic moment
ε expansion parameter given by Kn

vi

Additional notation for the Lagrangian drop model (Section 10.3):

mP drop mass [kg]
w drop velocity [m/s]
wrel drop velocity relative to surrounding fluid [m/s]

FD drag force [N]
FG gravitational force [N]

CD drag coefficient

Abbreviations

API application programming interface
CAD computer aided design
D2Q9 two-dimensional LB model with nine velocities

D3Q19 three-dimensional LB model with nineteen velocities
DF distribution function (usually denoted fi)

BGK Bhatnagar Gross Krook approximation of the collision operator
GUI graphical user interface
LB lattice Boltzmann

LBM lattice Boltzmann method
LES large eddy simulation

MRT multi relaxation time model
MPI distributed memory parallel programming API

NS Navier-Stokes
OpenMP shared memory parallel programming API
SPH smoothed particle hydrodynamics

SWS shallow water simulation
VOF volume of fluid free surface simulation model

vii

viii

Contents

1 Introduction 1

2 Simulation of Free Surface Flows 5

2.1 Animating Free Surfaces . 5

2.2 Comparing Simulation Approaches . 7

3 The Lattice Boltzmann Method 11

3.1 Historical Development . 11

3.2 The Basic Algorithm . 12

3.3 Stability . 16

3.4 Parametrization . 17

3.5 Derivation . 18

3.5.1 The Navier-Stokes Equations . 18

3.5.2 The Boltzmann Equation . 20

3.5.3 Chapman-Enskog Expansion . 21

3.5.4 Derivation of the Lattice Boltzmann Equation 22

3.6 Closure . 26

4 Lattice Boltzmann Simulations with a Free Surface 27

4.1 Interface Movement . 29

4.2 Free Surface Boundary Conditions . 30

4.3 Flag Re-initialization . 31

4.4 Interface Cell Artifacts . 33

4.5 Interactive Simulations . 33

5 Moving Obstacles 37

5.1 Obstacle Boundary Conditions . 38

5.2 Moving Boundary Conditions . 38

5.3 Lattice Initialization . 39

5.4 Surface Generation . 42

5.5 Results . 44

ix

6 Adaptive Time Steps 47

6.1 Adaptive Parametrizations and Mach Numbers 47

6.2 Validation and Performance . 50

7 Adaptive Grids 53

7.1 Grid Refinement . 53

7.2 Adaptive Coarsening Algorithm . 55

7.3 Validation . 61

7.4 Performance . 64

8 Parallelization 71

8.1 OpenMP Parallelization . 71

8.2 MPI Parallelization . 74

9 Fluid Control 79

9.1 Generating Control Particles . 82

9.2 Control Forces . 82

9.3 Detail-Preserving Control . 84

9.4 Results . 85

10 Modelling Large Scale Fluids 89

10.1 Shallow Water Simulation . 90

10.2 Hybrid 2D/3D Simulation . 92

10.3 Lagrangian Drop Model . 96

10.4 Results and Discussion . 99

11 A Programming Interface for Fluid Solvers 101

11.1 Blender Integration . 101

11.2 Integration Extensions . 103

12 Conclusions 107

12.1 Summary . 107

12.2 Discussion and Future Work . 108

A German Parts 129

A.1 Inhaltsverzeichnis . 129

A.2 Zusammenfassung . 130

A.3 Einleitung . 131

B Curriculum Vitae 133

x

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Liquid phases of matter are vital for numerous events in nature. As such, they are part
of every day life as well as many production processes. The numerical simulation of
liquid and gaseous materials has become an important tool, e.g., to compute a weather
forecast or the optimal shape of an aeroplane. This thesis will focus on the numerical
simulation of problems where two phases are involved, such as water and air, and the
gas phase can be handled with a simplified treatment. This is known as the free sur-
face approach. In Figure 1.1 and 1.2, several examples of flows in nature with different
scales can be seen, all of which could be theoretically recreated by a free surface simula-
tor. Although they represent a special case of fluid simulation, free surface simulations
are still valid for a wide variety of problems, from casting and foaming applications,
to the animation of liquids for special effects in computer generated animations.

Tools for physically based animations are currently included in all major 3D appli-
cations, as many physical effects are not suited for traditional animation approaches,
such as keyframing. Physically based animation means that the laws of physics are
solved or approximated with numerical algorithms to automatically create realistic
behavior and plausible motion of animated objects. Typical examples are collapsing
stacks of boxes, or the motion of clothes of an animated character. Algorithms for phys-
ically based animations often represent a combination of traditional numerical simula-
tions, e.g., for civil and engineering purposes, and animation algorithms for computer
graphics. While engineering applications usually focus on physical accuracy, a real-
istic appearance is the most important aspect for computer generated animations. In

2 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 1.1: Small scale example of a real fluid that could be simulated with a free
surface model – filling a cup with tea.

both cases, however, efficiency of the applied algorithms is highly important for prac-
tical applications. As fluids are so common in nature, it is furthermore crucial for
a plausible appearance that, e.g., splashes of water do not pass through each other,
change their path in mid-air, or disappear during their movement. Moreover, the most
common fluid, water, has a viscosity close to zero. Thus, it exhibits a very turbulent
behavior, which has to be recreated for computer animations and which is very hard
to recreate without relying on numerical simulations.

The physically based animation of liquids relies on the same underlying mathe-
matical descriptions, the Navier-Stokes (NS) equations, which have traditionally been
used in numerical simulations for a long time. The first two-dimensional computa-
tions of flows around cylinders were performed around 1930, while three-dimensional
problems were not solved until around 1965 [HS66]. Furthermore, standard free sur-
face simulations have constraints similar to those that are important for a realistic
appearance – e.g., mass conservation and turbulence. Therefore, this thesis will ex-
plain how to extend the free surface simulation algorithm developed for the simulation
of metal foaming processes to efficiently create physically based animations of three-
dimensional free surface flows. The algorithm is based on the lattice Boltzmann method
(LBM), a relatively new approach to approximate the Navier-Stokes equations that has
become increasingly popular due to its simple and efficient basic algorithm.

CHAPTER 1. INTRODUCTION 3

Contributions of this Thesis

The goal of this thesis is the stable, efficient and flexible simulation of free surface flows
with the LBM. The main contributions of this thesis to achieve this are:

• An algorithm for the treatment of moving and deforming obstacle objects to en-
able the simulation of dynamic and realistic scenes.

• Adaptive time steps to efficiently handle and stabilize scenes with varying veloc-
ities.

• Adaptive grids for the simulation of large water volumes. These can speed up
detailed free surface simulations by more than a factor of three.

• A control mechanism that preserves small scale flow features. It gives animators
large scale control of the fluid without disturbing the natural motion.

• A hybrid algorithm to enable simulations of large scale open water scenes by cou-
pling two-dimensional and three-dimensional techniques in combination with a
particle based drop model.

4 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 1.2: Here images from another real world free surface flow can be seen. Water
is poured onto an open water surface.

CHAPTER 2. SIMULATION OF FREE SURFACE FLOWS 5

Chapter 2

Simulation of Free Surface Flows

2.1 Animating Free Surfaces

This section will give a brief overview of related work on fluid simulations for com-
puter animations. Further references can be found in the corresponding sections of
each chapter. A first numerical fluid simulation was used in [YUM86] for generat-
ing the textures of the atmosphere of Jupiter, while Foster and Metaxas [FM96] were
the first to perform physically based animations of free surface fluids. They applied
an iterative scheme to solve a finite difference discretization of the NS equations, in
combination with marker particles for the free surface. However, at the time, the al-
gorithms and computational resources were not adequate to perform believable large
scale animations. Jos Stam’s introduction of projection methods led to the so-called
semi-Lagrangian fluid solvers [Sta99]. It was an important step towards practical fluid
animations as it significantly reduced the required computational resources.

After Ron Fedkiw’s work on level set and fluid simulation algorithms, e.g., in
[FAMO99], Foster and Fedkiw revived the topic of free surface animations five years
after [FM96] in [FF01]. Together with [Sta99] this work represents the foundation of
the now established group of level set based free surface simulations. These methods
have since been extended in various ways, e.g., to enhance the tracking of the free
surface [EMF02], to perform simulations on octree data structures [LGF04], or to han-
dle coupled simulations with deformable shells [GSLF05]. These algorithms have the

6 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 2.1: A sample of a metal foam, provided by C. Körner from WTM Erlangen is
shown on the left. An image of a foaming simulation from [KTH+05] performed with
the free surface algorithm of Section 4 can be seen on the right side.

advantage of a continuous and smooth surface representation given by the level set.
However, the level sets are not mass conserving by themselves. Thus, additional work
has to be done to ensure mass conservation, e.g., by tracing additional particles near
the interface [ELF05]. The method was furthermore extened to handle discontinuities
at the interface in [HK05], to accurately simulate drops on surfaces [WMT05], and to
enhance visual detail with vortex particles [SRF05]. [BGOS06] and [KAK+06] moreover
present techniques to texture fluid surfaces without undesired diffusion effects.

A variety of other fluid simulation algorithms have moreover been used to create
physically based animations. One class of these algorithms are the Volume of Fluid
(VOF) methods [HN81, SZ99]. They track the free surface by computing the fraction
of each volume of a cell in the computational grid that is filled with fluid. The advan-
tage of these algorithms is the conservation of mass. On the other hand, additional
work has to be done to create a fluid surface without artifacts or artificial surface ten-
sion. Sussman [Sus03] uses a VOF method combined with a level set, to achieve both
mass conservation and a smooth surface representation. The algorithm is used to sim-
ulate breaking waves in [MMS04]. Apart from VOF, another popular class of methods
are smoothed particle hydrodynamics (SPH). These stem from the field of astrophysics
[Mon05], and have the advantage of working without the explicit need for a domain
grid. The fluid is tracked by particles, which are also used to evaluate the computa-
tional kernels. Among others, the method is thus attractive in combination with a point
based geometry framework [PKKG03, PPG04, AA06]. SPH has been successfully ap-
plied to simulate phase changes [MKN+04] or multi-phase fluids [KAG+05, MSRG05],
However, the repeated averaging due to the kernel evaluations can lead to smoothing
effects, like an increased numerical viscosity. Unless multi resolution methods (e.g., as
those described in [KAG+06]) are used, larger fluid particle numbers can furthermore
lead to high computational costs due to the neighborhood computations.

More recently, variants of the semi-Lagrangian method of [Sta99] and alternative
approaches have been proposed. One of these is the so called FLIP method [BR86],
that is for example used to simulate sand as a fluid in [ZB05]. Another algorithm that
works on arbitrary simplicial meshes is described in [ETK+06]. Its goal is to reduce the

CHAPTER 2. SIMULATION OF FREE SURFACE FLOWS 7

inherent artificial viscosity and diffusion of a semi-Lagrangian solver using a vorticity
formulation of the NS equations. [FOK05] and [KFCO06] demonstrate a discretization
of the semi-Lagrangian solver for dynamically changing tetrahedral meshes. A differ-
ent but similarly interesting approach is explained in [TLP06]. The authors use a model
reduction technique to allow realtime simulations of phenomena such as smoke and
fire.

The algorithm applied in this thesis – the LBM – has become popular in previous
years, and is now used for a variety of applications. Among others, the commercial
PowerFlow package is an example of a lattice Boltzmann (LB) solver being used in the
production environment of car companies. The algorithm is interesting for GPU cal-
culations due to its parallelizability. In [WZF+03], interactive wind calculations were
performed on a GPU using the LBM, while in [WWXP06], interactive snow was sim-
ulated. Geist et. al even adapted the algorithm to light diffusion in [GRWS04]. Multi
phase models for the LBM originally used smooth interface transitions, such as the im-
miscible model of Gunstensen et. al [GRZZ91]. This algorithm requires a recoloring
of the participating fluids at the interface, and the broad interfaces require high reso-
lutions to simulate small scale features. Several other methods exist for multi-phase
flows, e.g., [SC94], [SOOY96] or [TKSR02, TFK03b] These have also been extended in
different ways, e.g., to allow for high density ratios [lBefitpfwldd04]. Ginzburg and
Steiner, on the other hand, propose a VOF based free surface approach in [GS03] that
is similar to the method that is used in the following. However, it requires additional
computations to increase the accuracy of the free surface tracking. This thesis is based
on the method that was applied and validated, e.g., in [KTH+05] to simulate metal
foaming. A metal foam sample and a simulation result can be seen in Figure 2.1. The
method was found to be both sufficiently accurate and computationally efficient. It will
be extended in the following to allow the creation of flexible and realistic animations
of free surface fluids.

2.2 Comparing Simulation Approaches

As for physically based animations a realistic appearance is the most important crite-
rion, it is difficult to rigorously compare the aforementioned simulation approaches.
For engineering applications the ability of an algorithm to accurately compute a cer-
tain flow property is usually used to choose an algorithm. This could be the accuracy
of a drag and lift force computation around a given object. For physically based ani-
mations no such measurement values exist. In general, fluid simulations for physically
based animation are required to handle low viscosities, thin sheets of fluid and small
details such as drops or fine obstacles. Furthermore, the fluid movement should show
no signs of compressibility or flickering. The algorithms should also exhibit high com-
putational efficiency in order to be of practical use.

Figure 2.2 summarizes the advantages and disadvantages that were experienced
during the work on this thesis with some of the typical fluid algorithms: the LB solver
of this thesis, a typical semi-Lagrangian level set based NS solver, and a kd-tree based
SPH solver. The main advantages of the level set solver are the smooth surface repre-
sentation due to the level set, and the arbitrary time step size of the semi-Lagrangian

8 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 2.2: Here an overview of the properties of three different simulation approaches
can be seen. Thanks to the authors of [KAG+06] and [GSLF05, Gue06] for the permis-
sion to use the SPH picture and level set picture, respectively.

solver. On the other hand, the level set tracking by itself is not mass conserving, and
thus requires additional techniques to guarantee mass conservation. Furthermore, the
pressure correction of an NS solver requires global information to achieve a divergence
free velocity field. Even when the method from [Sta99] is used, the velocity field has
to be globally corrected after each time step, while both the LBM and SPH explicitly
solve the pressure during the course of the simulation. However, this leads to another
problem with these two methods: if the time step size is too large, it can lead to a
noticeable compressibility of the liquid. The main advantages of an SPH solver are
its particle based representation of the fluid, and its natural ability to handle free sur-
faces in a mass conserving way. A drawback of SPH for detailed fluids is the increased
computational requirement for large particle numbers, unless a technique such as the
multi-resolution approach of [KAG+06] is used. Lastly, the LBM in combination with
the VOF free surface method is mainly attractive due to its efficient basic algorithm
with its local handling of boundary conditions. Due to the VOF method, it is also fully
mass conserving. The main drawbacks that are encountered when using LB solvers,
are the increased memory requirements and the small time step size in comparison
to NS solvers. On the other hand, it should be noted that a single LB step is usually
significantly faster than the update step of an NS solver.

In conclusion of this brief comparison, it can be stated that all previously mentioned
simulation approaches have their drawbacks and advantages. In accordance to the no-
free-lunch theorems, an efficient and flexible free surface simulator requires a combi-
nation of state of the art algorithms for each class of solvers. The overview given in
the previous paragraph should only be taken as a general trend. In fact, even different
implementations of the same algorithm can exhibit strongly varying behavior. Dur-
ing the work on this thesis it became clear that the LBM is a valid alternative to other
simulation algorithms. Its interesting properties and the quickly growing amount of
research in the area make it an approach that is worth considering for a wide variety

CHAPTER 2. SIMULATION OF FREE SURFACE FLOWS 9

of applications.

Outline

This thesis will first give a brief description of the basic LB algorithm. It will be ex-
plained how to derive the algorithm from the Boltzmann equation, and it will be
shown that the LBM yields an approximation to the Navier-Stokes equations. In Chap-
ter 4 the VOF model for the LBM will be explained. Additionally, chapter 5 will present
algorithms to efficiently handle moving obstacles for free surface LB simulations. Next,
an explanation will be given of how to adapt the time step size during the course of
the simulation. Chapter 7 will introduce a combination of all previous algorithms with
a method to adaptively coarsen the grid for large fluid volumes. As this algorithm
represents the final state of the free surface LBM itself, a performance evaluation and
comparison will be given at this point. Chapter 8 will then explain how to parallelize
the method, and show performance results for the parallelized version. The next three
chapters will focus on extensions that are targeted towards extending the flexibility of
the algorithm. Chapter 9 concentrates on controlling fluid simulations, without dis-
turbing important details of the flow. Chapter 10 discusses an extension to the free
surface algorithm that enables simulations of large scale open water scenes. (This is
done by coupling the three-dimensional simulation to a two-dimensional shallow wa-
ter simulation in combination with a model to animate small drops and foam.) Then
Chapter 11 will demonstrate how to construct a general API for the integration of a free
surface solver into a 3D application. Finally, in Chapter 12 a summary and an outlook
of possible extensions of the algorithm will be given.

As the topic of this thesis is the animation of fluids, the still pictures shown in the
following cannot fully capture the visual appearance of the corresponding simulations.
Hence, the animations of the test cases were made available on the internet under
www.ntoken.com/fluid.

10 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 11

Chapter 3

The Lattice Boltzmann Method

This chapter will describe the basic algorithm of the LBM. First, an overview of the
historical development of the method will be given. Next, the method itself and the
parametrization will be described. Finally, a derivation of the necessary equations and
a turbulence model to ensure stability are explained.

3.1 Historical Development

The free surface simulations of this thesis are based on the LBM, which means that the
simulation region is divided into a Cartesian (and in this case, equidistant) grid of cells,
each of which only interacts with cells in its direct neighborhood. While conventional
solvers directly discretize the NS equations, the LBM is essentially a first order ex-
plicit discretization of the Boltzmann equation in a discrete phase-space. It can also be
shown, that the LBM approximates the NS equations with good accuracy, an overview
of this derivation will be given later in this chapter. A detailed overview of the LBM
can be found, e.g., in [WG00, Suc01].

The Boltzmann equation itself has been known since 1872. It is named after the
Austrian scientist Ludwig Boltzmann, and is part of the classical statistical physics that
describe the behavior of a gas on the microscopic scale. The LBM follows the approach
of cellular automata to model even complex systems with a set of simple and local rules
for each cell [Wol02]. As the LBM computes macroscopic behavior, such as the motion

12 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

of a fluid, with equations describing microscopic scales, it operates on a mesoscopic
level in between those two extremes.

Historically, the LBM evolved from methods for the simulation of gases that com-
puted the motion of each molecule in the gas purely with integer operations. In [HYP76],
there was a first attempt to perform fluid simulations with this approach. It took ten
years to discover that the isotropy of the lattice vectors is crucial for a correct approx-
imation of the NS equations [FdH+87]. Motivated by this improvement, [MZ88] de-
veloped the first algorithm that was actually called LBM by performing simulations
with averaged floating point values instead of single fluid molecules. The third impor-
tant contribution to the basic LBM was the simplified collision operator with a single
time relaxation parameter. This collision operator is known as the Bhatnagar Gross
Krook (BGK) approximation [BGK54], and was derived independently by [CCM92],
and [QdL92]. Since then, the LBM has been applied to many classes of fluid mechan-
ics problems: the direct numerical simulation of turbulence [YGL05b], and Eulerian-
Lagrangian simulations [MC98], among others. Moreover, the LBM is available in
commercial fluid solvers [LLS00], which are in production use at, e.g., aerospace and
car companies, to name some examples. As the LBM can handle problems with a
wide range of Knudsen numbers, it is moreover interesting for problems where the NS
equations are no longer applicable. It can, e.g., be applied to hypersonic or rarefied gas
flows [SZ04].

A general comparison of LB solvers and conventional NS solvers is difficult. How-
ever, [GKT+06] compared state of the art solvers of both kinds. They come to the
conclusion that there is no clear winner, but the computational efficiency of the LBM
solver is comparable to a discretization of the corresponding NS problem. For special
types of problems, each type of solver has its advantages and disadvantages. Over-
all, a simple LB implementation performs very well for complex geometries, as each
LB cell contains information not only about the fluid velocity and pressure, but also
about their spatial derivatives. The method thus allows an accurate representation of
obstacles even for coarse grids. The free surface of a fluid usually results in complex
and, in particular, time dependent topologies. This is the motivation to use LBM for
simulating free surface flows, and the model used in the following is especially simple
due to this ability of the LBM to model complex boundary conditions. It will be dis-
cussed in more detail in Chapter 4. The basic LBM algorithm without extensions will
be described and derived in the following sections.

3.2 The Basic Algorithm

The basic LB algorithm consists of two steps, the stream-step, and the collide-step.
These are usually combined with no-slip boundary conditions for the domain bound-
aries or obstacles. The simplicity of the algorithm is especially evident when imple-
menting it, which, for the basic algorithm, requires roughly a single page of C-code.
Using a LBM, the particle movement is restricted to a limited number of directions.
Here, a three-dimensional model with 19 velocities (commonly denoted as D3Q19)
will be used. Alternatives are models with 15 or 27 velocities. However, the latter
one has no apparent advantages over the 19 velocity model, while the model with 15

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 13

Figure 3.1: The most commonly used LB models in two and three dimensions.

velocities has a decreased stability. The D3Q19 model is thus usually preferable as it
requires less memory than the 27 velocity model. For two dimensions the D2Q9 model
with nine velocities is the most common one. The D3Q19 model with its lattice veloc-
ity vectors e1..19 is shown in Figure 3.1 (together with the D2Q9 model). The velocity
vectors take the following values: e1 = (0, 0, 0)T , e2,3 = (±1, 0, 0)T , e4,5 = (0,±1, 0)T ,
e6,7 = (0, 0,±1)T , e8..11 = (±1,±1, 0)T , e12..15 = (0,±1,±1)T , and e16..19 = (±1, 0,±1)T .
As all formulas for the LBM usually only depend on the so-called particle distribu-
tion functions (DFs), all of these two-dimensional and three-dimensional models can
be used with the method presented here. To increase clarity, the following illustrations
will all use the D2Q9 model.

For each of the velocities, a floating point number f1..19, representing the fraction of
particles moving with this velocity, needs to be stored. Thus, in the D3Q19 model there
are particles not moving at all (f1), moving with speed 1 (f2..7) and moving with speed√

2 (f8..19). In the following, a subscript of ĩ will denote the value from the inverse
direction of a value with subscript i. Thus, fi and fĩ are opposite DFs with inverse
velocity vectors eĩ = −ei. During the first part of the algorithm (the stream step),
all DFs are advected with their respective velocities. This propagation results in a
movement of the floating point values to the neighboring cells, as shown in Figure 3.2.
Formulated in terms of DFs the stream step can be written as

f ∗
i (x, t+ ∆t) = fi(x + ∆t eĩ, t). (3.1)

Here, ∆x denotes the size of a cell and ∆t the time step size. Both are normalized by
the condition ∆t/∆x = 1, which makes it possible to handle the advection by a sim-
ple copying operation, as described above. These post-streaming DFs f ∗

i have to be
distinguished from the standard DFs fi, and are never really stored in the grid. The
stream step alone is clearly not enough to simulate the behavior of incompressible flu-
ids, which is governed by the ongoing collisions of the particles with each other. The
second part of the LBM, the collide step, amounts for this by weighting the DFs of a
cell with the so called equilibrium distribution functions, denoted by f eq

i . These depend
solely on the density and velocity of the fluid. Here, the incompressible model from
[HL97b] is used, which alleviates compressibility effects of the standard model by us-
ing a modified equilibrium DF and velocity calculation. The density and velocity can

14 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 3.2: This figure gives an overview of the stream and collide steps for a fluid cell.

be computed by summation of all the DFs for one cell

ρ =
∑

fi u =
∑

eifi . (3.2)

The standard model, in contrast to the one used here, requires a normalization of the
velocity with the fluid density. For a single direction i, the equilibrium DF f eq

i can be
computed with

f eq
i = wi

[

ρ+ 3ei · u − 3

2
u2 +

9

2
(ei · u)2

]

, where (3.3)

wi = 1/3 for i = 1,

wi = 1/18 for i = 2..7,

wi = 1/36 for i = 8..19.

The equilibrium DFs represent a stationary state of the fluid. However, this does not
mean that the fluid is not moving, but only that the values of the DFs would not
change, if the whole fluid was at an equilibrium state. For very viscous flows, such
an equilibrium state (equivalent to a Stokes flow) can be globally reached. In this case,
the DFs will converge towards constant values. The collisions of the molecules in a real
fluid are approximated by linearly relaxing the DFs of a cell towards their equilibrium
state. Thus, each fi is weighted with the corresponding f eq

i using:

fi(x, t+ ∆t) = (1 − ω)f ∗
i (x, t+ ∆t) + ωf eq

i . (3.4)

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 15

Here, ω is the parameter that controls the viscosity of the fluid. Often, τ = 1/ω is also
used to denote the lattice viscosity. The parameter ω is in the range of (0..2], where
values close to 0 result in very viscous fluids, while values near 2 result in more tur-
bulent flows. Usually these are also visually more interesting. However, for values
close to 2, the method can become instable. In Section 3.3, a method to stabilize the
computations with a turbulence model will be explained. This alleviates the instabili-
ties mentioned above. The parameter ω is given by the kinematic viscosity of a fluid.
Details of the parametrization will be explained in Section 3.4. The values computed
with Equation (3.4) are stored as DFs for time t+ ∆t. As each cell needs the DFs of the
adjacent cells from the previous time step, two arrays for the DFs of the current and
the last time step are usually used.

The easiest way to implement the no-slip boundary conditions is the link bounce
back rule that results in a placement of the boundary halfway between fluid and obsta-
cle cells. If the neighboring cell at (x + ∆t ei) is an obstacle cell during streaming, the
DF from the inverse direction of the current cell is used. Thus, Equation (3.1) changes
to

f ∗
i (x, t+ ∆t) = fĩ(x, t). (3.5)

Figure 3.3 illustrates those basic steps for a cell next to an obstacle cell.

An implementation of the algorithm described so far might consist of a flag field
to distinguish fluid and obstacle cells, and two arrays of single-precision floating point
variables, with 19 values for each cell in the grid. During a loop over all cells in the cur-
rent grid, each cell collects the neighboring DFs according to Equation (3.1) or Equa-
tion (3.5), for adjacent fluid and obstacle cells respectively. The density and velocity
are computed and used to calculate the equilibrium DFs. These are weighted with the
streamed DFs and written into the other grid, continuing with the next cell in the grid.
Subsequent time steps alternate in streaming and colliding the DFs from one grid array
to the other. Note that using Equation (3.5) the DFs for obstacle cells are never touched.

In contrast to a standard finite-difference NS solver, the implementation is much
simpler, but also requires more memory. Such a typical NS solver usually requires
7 floating point values for each grid point (pressure, three velocity components, plus
three temporary variables), but for some cases it might need higher resolutions to re-
solve obstacles with the same accuracy. Using a more sophisticated LB implementation
with grid compression [PKW+03], the memory requirements can be reduced to almost
half of the usual requirements. Furthermore, using an adaptive time step size is com-
mon practice for a NS solver, while the size of the time step in the LBM is, by default,
fixed to 1 (although in Chapter 6 a method to also change the time step size for a LB
solver will be presented). As the maximum lattice velocity may not exceed 1/3, in
order for the LBM to remain stable, it might still need several time steps to advance
to the same time a NS solver would reach in a single step. However, each of these
time steps usually requires a significantly smaller amount of work, as the LBM can be
computed very efficiently on modern CPUs. Moreover, it does not require additional
global computations such as the pressure correction step.

16 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 3.3: This figure gives an overview of the stream and collide steps for a fluid cell
next to an obstacle.

3.3 Stability

In order to simulate turbulent flows with the LBM, the basic algorithm needs to be
extended, as its stability is limited once the relaxation parameter τ approaches 1/2
(which is equivalent to ω being close to 2). Here, the Smagorinsky sub-grid model,
as used in, e.g., [WZF+03, LWK03], will be applied. Its primary use is to stabilize the
simulation, instead of relying on its ability to accurately model subgrid scale vortices
in the simulation. Compared to the small slowdown due to the increased complexity
of the collision operator, this usually results in a large improvement of efficiency, as the
simulations would otherwise require considerably finer grid resolutions.

The sub-grid turbulence model applies the calculation of the local stress tensor as
described in [Sma63] to the LBM. The computation of this tensor is relatively easy for
the LBM, as each cell already contains information about the derivatives of the hydro-
dynamic variables in each DF. The magnitude of the stress tensor is then used in each
cell to modify the relaxation time according to the eddy viscosity. For the calculation
of the modified relaxation time, the Smagorinsky constant C is used. For the simula-
tions in the following, C will be set to 0.03. Values in this range are commonly used
for LB simulations, and were shown to yield good modeling of the sub-grid vortices
[YGL05a]. The turbulence model is integrated into the basic algorithm that was de-
scribed in Section 3.2 by adding the calculation of the modified relaxation time after
the streaming step, and using this value in the normal collision step.

The modified relaxation time τs is calculated by performing the steps that are de-
scribed in the following. First, the non-equilibrium stress tensor Πα,β is calculated for

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 17

each cell with

Πα,β =
19∑

i=1

eiαeiβ (fi − f eq
i) , (3.6)

using the notation from [HSCD96]. Thus, α and β each run over the three spatial
dimensions, while i is the index of the respective velocity vector and DF for the D3Q19
model. The intensity of the local stress tensor S is then computed as

S =
1

6C2

(√

ν2 + 18C2
√

Πα,βΠα,β − ν

)

. (3.7)

Now the modified relaxation time is given by

τs = 3(ν + C2S) +
1

2
. (3.8)

From Equation (3.7) it can be seen that S will always have a positive value – thus the
local viscosity will be increased depending on the size of the stress tensor calculated
from the non-equilibrium parts of the distribution functions of the cell to be relaxed.
This effectively removes instabilities due to small values of τ . Note that for engineering
applications it is usually important to evaluate the effects of the turbulence model on
accuracy, while it is primarily applied for stability in this thesis.

A fundamentally different method that also leads to a stabilization of the basic LBM
is the multi relaxation time approach (MRT). In this case, the single time relaxation op-
erator of Equation (3.4) is replaced by a more advanced one that relaxes the different
hydrodynamic moments separately [LL00, dGK+02]. These multiple relaxation times
can be used to increase the accuracy of the simulation, e.g., for precisely handled obsta-
cles in the flow. Moreover, it can be combined with the Smagorinsky turbulence model,
as demonstrated by Krafczyk et. al in [KTL03] or by Yu et. al in [YLG06]. However, for
the rest of this thesis, the single relaxation time model will be used, as the increased
accuracy of MRT is not necessary, and the additional computations would lead to a
slightly reduced performance.

3.4 Parametrization

Below, the conversion of dimensional quantities, denoted by primed symbols, into
dimensionless quantities used in the LBM will be described. Given the real-world

values for kinematic viscosity ν ′ [m2

s
], domain size S ′ [m], a desired grid resolution

r, and a gravitational force g′ [m
s2], the corresponding lattice quantities are computed

as described in the following. Let S ′ be the length of one side of the domain that
should be resolved with r cells. The cell size used by the LBM can then be computed
as ∆x′ = S ′/r.

The dimensional timestep ∆t′ is computed by limiting the compressibility due to
gravitational force. Here a value of gc = 0.005 is used to keep the compressibility below
half a percent. Thus,

∆t′ =

√

gc · ∆x′
|g′| (3.9)

18 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

yields a time step ensuring that the force exerted on each cell due to gravitational ac-
celeration is causing less than a factor gc of compression. Given ∆x′ and ∆t′, the di-
mensionless lattice viscosity ν, and relaxation time ω are computed as

ν = ν ′
∆t′

∆x′ 2
, (3.10)

and

τ = 3ν + 1/2 , ω =
1

τ
. (3.11)

Likewise, the lattice acceleration g (e.g., due to gravity) is calculated as

g = g′∆t
′ 2

∆x′
. (3.12)

In conclusion, a valid parametrization for an LB fluid simulation is given by the
physical scale, the desired kinematic viscosity and the compressibility factor. For a
given grid resolution, the values of τ and ∆t can then be calculated. Note that when
the grid resolution is small in combination with a low viscosity, the resulting value of
τ will be close to 1/2. Due to the turbulence model of Section 3.3, the simulation will
remain stable, but effectively increase the viscosity to a value that can be handled with
the chosen grid resolution.

3.5 Derivation

This section will give an overview of the Navier-Stokes and the Boltzmann equations
and relate them to the LBM. Furthermore, the a priori derivation of the LBM will be
described.

3.5.1 The Navier-Stokes Equations

The origins of the established Navier-Stokes (NS) equations reach back to Isaac New-
ton, who, around 1700, formulated the basic equations for the theoretical description
of fluids. These were used by L. Euler half a century later to develop the basic equa-
tions for momentum conservation and pressure. Amongst others, Louis M. H. Navier
continued to work on the fluid mechanic equations at the end of the 18th century, as
did Georg G. Stokes several years later. He was one of the first to analytically solve
fluid problems for viscous media. The NS equations could not be practically used un-
til in the middle of the 20th century, when the numerical methods, that are necessary to
solve the resulting equations, were developed. Further information on fluid mechanics
in general and the NS equations can for example be found in [KC04].

One of the important aspects for a fluid mechanics problem is the conservation of
mass, as the mass of the fluid naturally has to remain constant for a given fluid system.
This is ensured by the continuity equation

∂ρ

∂t
+
∂(ρui)

∂xi

= 0 . (3.13)

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 19

Note that the second partial derivative is written in Einstein notation, meaning that
the i subscript appearing twice denotes a sum over all possible values. In this case it
is a sum over the three spatial dimensions. For a fluid with constant density, Equa-
tion (3.13) can be simplified to

∂ui

∂xi

= 0 , (3.14)

which means that the velocity field has to be divergence free in order to conserve mass.
The continuity equation is applied together with the NS equations, or momentum

equations, which can be written as:

ρ

(
∂uj

∂t
+ ui

∂uj

∂xi

)

︸ ︷︷ ︸

advection

+
∂P

∂xj
︸ ︷︷ ︸

pressure

+
∂τij
∂xi
︸ ︷︷ ︸

momentum

= ρgj, j = 1, 2, 3 . (3.15)

Three parts of this equation can be distinguished. The first part of the equation is
responsible for mass forces like advection. The partial derivatives of the pressure P are
surface forces acting on the fluid. The third, and most complicated part, contains the
tensor τij , and introduces momentum effects due to molecular movement. This effect
is similar to a friction between the fluid layers, but can be attributed to the momentum
exchange due to Brownian motion of the molecules [Dur06].

For Newtonian fluids, i.e., fluids with a viscosity that is independent of the shear
rate, τij can be computed as follows

τij = −µ
(
∂uj

∂xi
+
∂ui

∂xj

)

+
2

3
δijµ

∂uk

∂xk
. (3.16)

In this equation, µ denotes the dynamic shear viscosity, a value depending on the phys-
ical properties of the fluid. Note that ν denotes the kinematic viscosity, which is related
to the dynamic viscosity by ν = µ/ρ. The Kronecker symbol denotes a tensor with
δij = 1 for i = j, and δij = 0 otherwise. As τij can be computed with Equation (3.16),
this leaves six unknown variables in Equation (3.14) and Equation (3.15): the pressure,
the three velocity components, the density and the viscosity. However, for incom-
pressible (ρ = const) and Newtonian (µ = const) fluids the two remaining unknowns
pressure and velocity can be solved with the simplified equations:

∂ui

∂xi

= 0 (continuity equation) (3.17)

ρ

(
∂uj

∂t
+ ui

∂uj

∂xi

)

+
∂P

∂xj
= µ

∂2uj

∂x2
i

+ ρgi (NS equations) . (3.18)

With adequate initial and boundary conditions, these equations can be discretized,
e.g., using finite differences or finite volumes, and solved using numerical algorithms
such as Gauss-Seidel, conjugate gradient or multigrid methods. An implementation of
a finite-difference discretization of the NS equations with explicit time stepping can be
found, e.g., in [GDN88].

In fluid mechanics, these equations are usually treated in a dimensionless way. This
is valid as fluids behave similar at different size and time scales when they have the

20 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

same Reynolds number (Re). It is a dimensionless value, and can be calculated in the
following way:

Re =
U L

ν
(3.19)

Here ρ is the fluid density, U the macroscopic flow speed andL the characteristic length
or distance of the problem. Thus, a fluid with a given velocity and viscosity behaves
similar to one with a lower velocity and correspondingly smaller viscosity. Similarly,
two problems with the same physical fluids are comparable when the flow speed is
increased, and the characteristic length is decreased by the same factor. For example,
in order to measure the flow around an aerodynamic body, wind tunnels with a smaller
model and increased flow speed are often used. More details on the NS equations, their
derivation and applications can be found in many textbooks on fluid dynamics, such
as [Dur06] and [KC04].

3.5.2 The Boltzmann Equation

Including an external force G, the Boltzmann equation can be written as

∂f

∂t
+ ξ · ∂f

∂x
+ G · ∂f

∂ξ
= Ω(f) , (3.20)

where the function f gives the amount of particles traveling with a given speed, vol-
ume, time and position. The left hand side describes the overall motion of the molecules
with the microscopic velocity ξ through the force field that is given by G at x, while
the right hand side models the interaction of molecules with the collision operator Ω.
It is an integral equation that includes the differential collision cross section for the two
particles, which can be calculated geometrically by approximating the molecules with
rigid spheres for the collision [Fro79].

Due to the complicated nature of the collision operator Ω, it is often replaced by sim-
pler expressions that preserve the collision invariants and tend towards a Maxwellian
distribution. The standard model for this is the BGK approximation that was proposed
in [BGK54] and [Wel54]:

ΩBGK(f) =
f e − f

τ
(3.21)

Here f e is a Maxwellian distribution representing the local equilibrium that is parametrized
by the conserved quantities density ρ, speed ξ and temperature T . Each collision
changes the distribution function f proportional to the departure from the local equi-
librium f e, where the amount of this correction is modified by the relaxation time τ . In
general, the collision time is dependent on properties of the gas and its current state.
However, for the BGK approximation, it is simplified and represented as a single value.

The local equilibrium is reached when Ω(f e, f e) vanishes. With this property, it can
be shown that f is collision invariant, and, as such, does not change under the effects of
a collision. The density ρ, momentum ξa, and energy E are the Lagrangian parameters.
Assuming a normalized particle mass of 1, they are computed as

∫

fdξ = ρ ,

∫

fuadξ = ρξa , and

∫

f
u2

2
dξ = ρE . (3.22)

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 21

The macroscopic flow speed ξa, density ρ, and fluid temperature T parametrize the
Maxwell distribution (sometimes also called Maxwell-Boltzmann distribution). For
three dimensions it is:

fM = ρ

(
m2

2πRT

)3/2

e
−(ξ−u)2m2

2RT (3.23)

Where R is the Boltzmann constant, and m the mass of a particle.

3.5.3 Chapman-Enskog Expansion

To show that the Boltzmann equation can be used to describe fluids, the NS equations
are derived by a multi-scale analysis called Chapman-Enskog expansion. It relies on
the Knudsen numberKn = λ/LC , which is the ratio between the mean free path length
λ and the characteristic shortest scale of the macroscopic system that needs to be con-
sidered (LC). The Knudsen number has to be much smaller than one, in order for the
treatment of the fluid as a continuous system to be valid. For the derivation of the NS
equations from the Boltzmann equation, the latter is split according to a hierarchy of
different scales for space and time variables. It is based on the expansion parameter ε
for which the Knudsen number Kn will be used. Usually, the expansion is truncated
after terms of second order. In the following, a derivation of the Euler equations will
be shown, which also illustrates the subsequent steps that are necessary to derive the
full NS equations.

For the time variables, the representation t = εt1 + ε2t2 is chosen. The time t rep-
resents the fast local relaxations in a fluid by collisions. Sound waves, as well as ad-
vection, are of the scale t1, and are considerably slower than the local relaxations. Still,
these are faster than diffusion processes which take place on the time scale t2. On the
other hand, only one spatial expansion has to be considered, giving the following ex-
pansion of first order: x = εx1 . This is due to the fact that advection and diffusion are
both considered in similar spatial scales x1. The differential operators are represented
in the same way

∂

∂xa
= ε

∂

∂xa
, and

∂

∂t
= ε

∂

∂t
+ ε2 ∂

∂t
. (3.24)

For a consistent expansion, the second order terms in space are also necessary. The
moment equations of f are directly expanded to a sum of the form:

f =

∞∑

n=0

εnfn (3.25)

Furthermore, it is assumed that the time dependence of f is only caused by the vari-
ables ρ,u, and T . Expanding Equation (3.20) in both space and time up to second order
yields

ε
∂f

∂t1
+ ε2 ∂f

∂t2
+ εua ·

∂f

∂xa
+

1

2
ε2uaub

∂2f

∂xa∂xb
= Ω(f 0) + ε

∂Ω(f 1)

∂f
. (3.26)

Note that here f 0 is a Maxwell distribution, and as such, due to the definition of the
BGK collision approximation in Equation (3.21), Ω(f 0) is zero. The three scales from

22 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

O(ε0) to O(ε2) can be distinguished in Equation (3.26), and are handled separately. In
the following, subsequent expansions of the conservation equations will be performed.
Using a second order Knudsen number expansion of the mass m, the first order terms
of Equation (3.26) yield

∂ρ

∂t1
+
ρ∂ua

∂x1a

= 0 , and (3.27)

∂ρua

∂t1
+
∂
∫
uaubf

0du

∂x1b

= 0 . (3.28)

The continuity equation is already recognizable. When the integral of the second
equation is evaluated analytically, it can be replaced by ρuaub + ρTδab which leads to

∂ρua

∂t1
+
∂ρuaub

∂x1b

+
∂ρTδab

∂x1b

= 0 , (3.29)

yielding the Euler equation for inviscid flows without dissipation.
Finally, to derive the NS equations, the second order equations also have to be con-

sidered. For these, both equilibrium, and non-equilibrium levels have to be handled in
the expansion. Still, using first order conservation terms of zero, and restoring the con-
tinuous form of the equations, the NS equations as in Equation (3.15), can be derived.
This is possible as terms of order O(u3) can be neglected, due to the assumption of
small Mach numbers for the expansion. The full derivation with these additional steps
that are similar to the expansion steps shown above, is given in, e.g., [Har71, WG00].

3.5.4 Derivation of the Lattice Boltzmann Equation

The following section will explain the derivation of the lattice Boltzmann equation
from the continuous Boltzmann equation. It is based on [HL97a], and the more detailed
description in [Tre02]. The method described here allows the derivation of the Lattice
Boltzmann equation from an arbitrary kinetic equation, although it historically derived
from the Lattice Gas cellular automata. The following abbreviations will be used from
in this chapter: f(x, ξ, t) = f(t), and f(x+ξa, ξ, t+a) = f(t+a). The same abbreviations
hold for g, which denotes an equilibrium distribution function. This is explained in
more detail in Section 3.5.4.

As a starting point, the Boltzmann equation with BGK collision approximation will
be used:

∂f(t)

∂t
+ ξ

∂f(t)

∂x
= −1

λ

[

f(t) − g(t)
]

(3.30)

where f is the particle distribution function at time t and position x for the microscopic
velocity ξ. 1/λ = A · n is the relaxation time for the collision that is calculated from the
number of particles n and the proportional coefficient A. Here, the collision term has
been linearized according to Equation (3.21) for simplicity, without loosing generality.
g is the Maxwell distribution fM from Equation (3.23).

The hydrodynamic properties of the fluid, the density ρ, velocity u, and the tem-
perature T can be calculated with the moments of the function f . Here, the energy γ

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 23

from the energy density ργ can be used to determine the temperature of the fluid.

ρ =

∫

f(x, ξ, t)dξ (3.31)

ρu =

∫

ξf(x, ξ, t)dξ (3.32)

ργ =

∫
1

2
(ξ − u)f(x, ξ, t)dξ (3.33)

Note that the equilibrium distribution function g is calculated with these hydrody-
namic moments, although it is written as a function of time and velocity. Hence, these
values have to be correctly approximated after discretization.

Time discretization

Equation (3.30) can be formulated as an ordinary differential equation (ODE):

Df

Dt
+

1

λ
f =

1

λ
g , where

D

Dt
=

∂

∂t
+ ξ

∂

∂x
(3.34)

is the time derivative along the microscopic velocity. Assuming that δt is small and g
is a smooth function, Equation (3.34) can be simplified to:

f(t+ δt) − f(t) = −δt
λ

(f(t) − g(t)) . (3.35)

Here, the relaxation time δt

λ
is usually written as 1

τ
. This formula is already similar

to Equation (3.4) above. The following sections will describe the discretization of the
velocity space and the derivation of an equilibrium function g that is consistent with
the Navier-Stokes equations.

Approximation of the equilibrium distribution

The Maxwell distribution that is used as the equilibrium distribution function g is
given by Equation (3.23). For a particle mass of 1 and D dimensions it reads:

g(u) =
ρ

(2πRT)D/2
e−

(ξ−u)2

2RT (3.36)

This function will be Taylor expanded in u up to the second order, which is a valid
approximation for small velocities, and low Mach numbers. The following formula
will be used as the local equilibrium distribution for the following derivations:

f (eq) =
ρ

(2πRT)D/2
e−

ξ2

2RT

(

1 +
ξ · u
RT

+
(ξ · u)2

2(RT)2
− u2

2RT

)

. (3.37)

It is derived by expanding the quadratic form in the exponent of e from Equation (3.36)
and Taylor expanding the resulting equation.

24 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Discretization of the velocities

For simplicity, the D2Q9 model will be derived in the following section. As can be
seen in Equation (3.31), the moment integrals over the whole velocity space have to be
evaluated. As the velocity is not yet discretized, these run from −∞ to +∞ in both x
and y direction for a two-dimensional model. The moments of the particle distribution
functions are important for consistency with the Navier-Stokes equations. Another
important property that has to be retained by the discretization is the isotropy, which
is the most important of the Navier-Stokes symmetries. Therefore the lattice should
be invariant to rotations of the problem – this can be shown by isotropy tensors as in
[WG00]. For the LB derivation, the moments are directly used as constraint for the
numerical integration method.

For models that include temperature the integration of moments up to second order
has to be included. As an isothermal model will be used here, only the first moment,
the velocity is required. The moments of Equation (3.37) in two dimensions can gener-
ally be written as follows:

I =

∫

ψ(ξ)f (0)dξ with ψ(ξ) = ξm
x ξ

n
y (3.38)

Here ψ is the moment function that contains powers of the velocity components. After
restructuring the equation, moments of up to the third order will occur in the equation -
one from the velocity moment, and two from the (ξ ·u)2 term. For numerical treatment,
Equation (3.38) can be written as

I =
ρ

(2πRT)D/2

∫

ψ(ξ) e−
ξ2

2RT

(

1 +
ξ · u
RT

+
(ξ · u)2

2(RT)2
− u2

2RT

)

dξ . (3.39)

The next step for the derivation of the LBM is to numerically integrate these moments
with

∫

f(x)W (x)dx =

N∑

j=1

wjf(xj) . (3.40)

Here W (x) is the weighting function (e−x2
, in this case), and f(x) is a polynomial in x,

e.g., f(ζx) = ζm
x . To numerically integrate functions such as e−ζ2

, the commonly used
Gauss-Hermite quadrature can be applied [Bro05], which is correct for polynomials
in W up to the order (2N − 1). The order of the quadrature thus has to be chosen
according to the order of the moment polynomial ψ. Although the model is isothermal,
the energy due to the temperature has to be kept constant. Hence, there is no additional
level of freedom for the temperature, but for the moment integration it has to be taken
into account. A Gauss-Hermite quadrature of third order (N = 3) is thus required

Im
i =

3∑

j=1

wj(ζj)
m . (3.41)

The values of ζ and w are given by the Gauss-Hermite quadrature as: ζ1 = −
√

3/2,

ζ2 = 0, ζ3 = +
√

3/2, w1 =
√
π/6, w2 = 2

√
π/3, and w3 =

√
π/6. The moment function

CHAPTER 3. THE LATTICE BOLTZMANN METHOD 25

can again be shortened to:

I =
ρ

π

3∑

i=1

3∑

j=1

wiwjψ(ζi,j)

(

1 +
ξ · u
RT

+
(ξ · u)2

2(RT)2
− u2

2RT

)

(3.42)

where ζi,j is the vector given by the quadrature as ζi,j =
√

2RT (ζi, ζj)
T . As the two

sums run over three values for i and j each, there are a total of nine possible values for
ζi,j and wiwj. For these, a new single index will be introduced. Furthermore, a number
of substitutions can be made. As an isothermal model is used, the temperature T can

be replaced by a constant c =
√

2RT
√

3/2 =
√

3RT . The speed of sound cs = 1/
√

3 in
the model yields c2s = c2/3 = RT . The weights w, divided by π read:

w0 = w2w2 = 4/9

w1..4 = w1w2, w2w1, w3w2, w2w3 = 1/9

w5..8 = w1w3, w3w1, w1w1, w3w3 = 1/36 (3.43)

Each component of the vectors ζi,j is either 0 or ±
√

2RT
√

3/2 = ±
√

3RT = c:

e0 = ζ1,1 = (0, 0)T

e1..4 = ζ1,2, ζ2,1, ζ3,2, ζ2,3,= (±1, 0)T c, (0,±1)T c

e5..8 = ζ1,3, ζ3,1, ζ1,1, ζ3,3,= (±1,±1)T c

(3.44)

With these discrete velocities, Equation (3.42) reads:

I =
9∑

α=1

Wαψ(eα)f eq
α (3.45)

Here, Wα can be identified as 2πRTe
ξ2

2RT . This yields the equilibrium distribution func-
tion already used as Equation (3.3) for each of the nine velocities:

f eq
α = wαρ

(

1 +
3e · u
c2

+
9(e · u)2

2c4
− 3u2

2c2

)

(3.46)

Note that the lattice velocity vectors were given by the chosen Gauss-Hermite quadra-
ture. The configuration of the lattice is likewise obtained from these velocities. It is
possible to discretize velocities and lattice configuration differently, as has been shown
in [HL97a], and [BdLL01].

Other LB models like the D3Q27 model can be derived in the same way. For the
more often used three-dimensional model D3Q19, however, it is not possible to directly
apply this method. Problems arise from the more irregular arrangement of the velocity
vectors that cannot be easily formulated as a quadrature term. For these models, the
ansatz method has to be used [WG00]. For a given kinetic equation like Equation (3.30)
together with an equilibrium distribution, as the one from Equation (3.37), the velocity
weights for a specific lattice can be calculated. Multi-scale analysis yields constraints
for the moments of f that can be used to compute the required coefficients.

26 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

3.6 Closure

The LB algorithm developed from discrete gas simulations, and yields a simple yet
efficient method to solve the NS equations on a mesoscopic scale. Parametrization of
the lattice parameters can be performed by introducing a limit for the compressibility
per time step. Furthermore, the Smagorinsky turbulence model is useful for stabiliza-
tion of the algorithm, e.g., when fluids with a low viscosity (such as water) need to be
simulated. With Chapman-Enskog expansion the NS equations can be derived from
the LBM. In addition, an a priori derivation of the LBM from a given kinetic equation
is possible by carefully discretizing velocity and time in combination with an appro-
priate equilibrium distribution function. The following chapters will extend the basic
LBM described so far to perform free surface simulations.

CHAPTER 4. LATTICE BOLTZMANN SIMULATIONS WITH A FREE SURFACE 27

Chapter 4

Lattice Boltzmann Simulations with a
Free Surface

Roughly three quarters of the earth are covered by water, and water is crucial for the
survival of almost all lifeforms. As humans need to breathe air, we usually only see
the interface between a volume of water, and the air, which itself can be regarded as
a fluid. Water, and fluids in general, thus play an important role in everyday life, and
are therefore important for any virtual application that is aiming to recreate a natural
environment – be it a computer generated scene for a movie or a realtime computer
game. This chapter will provide an algorithm to simulate a fluid with low viscosity,
such as water, moving within a more viscous gas (e.g. air) – in terms of fluid mechanics,
the water represents a fluid with a free surface. The free surface model of this thesis is
similar to VOF approaches and thus explicitly conserves mass up to machine precision.
It moreover includes the tracking of the fluid surface, hence no additional advection
computations are necessary. The model itself, the boundary conditions and rules for
cell conversion will be explained in this chapter. Afterwards results from interactive
free surface simulations will be presented.

VOF methods are used for NS solvers since 1981 when they were introduced by Hirt
and Nichols [HN81]. They can be used to achieve results of high quality, e.g., as shown
in [Sus03] or [MMS04]. An overview of free surface simulations, and in more detail
VOF, for engineering applications is given in [SZ99]. In contrast to the standard VOF
methods the algorithm presented here directly computes the mass changes from the

28 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

values available in the LBM. Other multiphase and free surface LB models exist, such
as [GRZZ91] and [GS03], but the boundary conditions presented in the following are
especially inexpensive to compute. Thus, the algorithm achieves a high performance
on common PC architectures. The regularity of the cell array results in a high cache
efficiency, thus overcoming the memory bottleneck that often limits the performance
[PKW+03]. The algorithm furthermore performs very well in parallelized versions, as
was shown, e.g., in [PTD+04].

Most realtime simulations were up to now targeted towards the simulation of a sin-
gle phase, e.g. to handle smoke. The semi-Lagrangian method was demonstrated for
realtime use in [Sta03]. The model reduction technique of [TLP06] also allows realtime
simulations. Moreover, it has the property to have a computational cost proportional
to the number of points where the velocity field is evaluated. This is useful when only
a limited number of particles should be traced in the velocity field of the fluid. Real-
time fluid simulations without a free surface using the LBM were demonstrated, e.g.,
in [LWK03, WWXP06]. A full realtime free surface simulation method with the par-
ticle based SPH method was demontrated in [MCG03a]. The algorithm presented in
this chapter is based on a method originally developed to optimize and enhance the
production process of metal foams [KS99, KS00, KBA+00, ATKS00]. In [KTS02] first
results in two dimensions were presented. Three-dimensional results and validation
experiments can be found in [KTH+05].

The simulation of free surfaces clearly requires a distinction between regions that
contain fluid and regions that contain only gas. This is done by marking cells that
contain no fluid as empty in the flag field. As with obstacle cells, the DFs of these cells
are completely ignored during the simulation. However, in contrast to boundary cells,
the fluid might at some point in the simulation move into this empty area. To track
the fluid motion, another cell type is introduced: the interface cell. These cells form
a closed layer, as shown in Figure 4.1. between fluid and empty cells. Here the real
work for the simulation and tracking of the free surface is done. It consists of three
steps – the computation of the interface movement, the boundary conditions at the
fluid interface, and the re-initialization of the cell types. In the next sections, the steps
that are executed for an interface cell instead of the standard stream and collide step
are described. An overview of the procedure is given in Figure 4.2.

Figure 4.1: Here the different cell types required for the free surface algorithm can be
seen.

CHAPTER 4. LATTICE BOLTZMANN SIMULATIONS WITH A FREE SURFACE 29

Figure 4.2: An illustration of the steps that have to be executed for an interface cell can
be seen in this figure.

4.1 Interface Movement

The movement of the fluid interface is tracked by the calculation of the mass that is
contained in each cell. This requires two additional values to be stored for each cell:
the mass m, and the fluid fraction ǫ. The fluid fraction is computed with the cell mass
and density:

ǫ = m/ρ . (4.1)

Similar to VOF methods, the interface motion is tracked by computing the fluxes be-
tween the cells. However, as the DFs correspond to a certain number of particles, the
change of mass is directly computed from the values that are streamed between two
adjacent cells for each of the directions in the model. For an interface cell and a fluid
cell at (x + ∆t ei) this is given by:

∆mi(x, t+ ∆t) = fĩ(x + ∆t ei, t) − fi(x, t). (4.2)

30 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Table 4.1: Substituting se of Equation (4.3) with the appropriate term given here forces
the undesired interface cells to fill or empty. In this table xnb denotes the position of
the neighboring cell: xnb = x + ∆t ei.

standard cell at (xnb) no fluid neighbors
at (xnb)

no empty neighbors
at (xnb)

standard
cell at (x)

(fĩ(xnb, t) − fi(x, t)) fĩ(xnb, t) −fi(x, t)

no fluid
nb.’s at (x)

−fi(x, t) (fĩ(xnb, t) − fi(x, t)) −fi(x, t)

no empty
nb.’s at (x)

fĩ(xnb, t) fĩ(xnb, t) (fĩ(xnb, t) − fi(x, t))

The first DF is the amount of fluid that is entering this cell in the current time step, the
second one the amount that is leaving the cell. The mass exchange for two interface
cells has to take into account the area of the fluid interface between the two cells. It
is approximated by averaging the fluid fraction values of the two cells. Thus Equa-
tion (4.2) becomes

∆mi(x, t+ ∆t) = se
ǫ(x + ∆t ei, t) + ǫ(x, t)

2
, (4.3)

with se = fĩ(x + ∆t ei, t) − fi(x, t) .

Both equations are completely symmetric, as the amount of fluid leaving one cell
has to enter the other one, and vice versa. It thus holds that: ∆mi(x) = −∆mĩ(x+∆t ei).
For interface cells with neighboring fluid cells, the mass change has to conform to the
DFs exchanged during streaming, as fluid cells don’t require additional computations.
Their fluid fraction is always equal to one, and their mass equals their current density.
The mass change values for all directions are added to the current mass for interface
cells, resulting in the mass for the next time step:

m(x, t+ ∆t) = m(x, t) +
19∑

i=1

∆mi(x, t+ ∆t). (4.4)

4.2 Free Surface Boundary Conditions

As described above, the DFs of empty cells are never accessed. However, interface cells
always have empty cell neighbors. Thus, during the stream step only DFs from fluid
cells or other interface cells are streamed normally, while the DFs that would be read
from empty cells need to be reconstructed with corresponding boundary conditions
at the free surface. These boundary conditions do not require additional constructs,

CHAPTER 4. LATTICE BOLTZMANN SIMULATIONS WITH A FREE SURFACE 31

such as ghost layers around the interface. Thus, they can be treated locally for each
cell. An atmospheric pressure of ρA = 1 is used, as this is also the reference density
and pressure of the fluid. Moreover, it is assumed that the viscosity of the fluid is
significantly lower than that of the gas phase, while having a higher density. Hence,
the gas follows the fluid motion at the interface. In terms of distribution functions, this
means that if at (x + ∆t ei) there is an empty cell:

f ′
ĩ
(x, t+ ∆t) = f eq

i (ρA,u) + f eq

ĩ
(ρA,u) − fi(x, t), (4.5)

where u is the velocity of the cell at position (x) and time t according to Equation (3.2).
The pressure of the atmosphere onto the fluid interface is introduced by using ρA for
the density of the equilibrium DFs. Applying Equation (4.5) to all directions with
empty neighbor cells would result in a full set of DFs for interface cells. However,
to balance the forces on each side of the interface, the DFs coming from the direction of
the interface normal are also reconstructed. Thus, if the DF fi would be streamed from
an empty cell, or if

n · eĩ > 0 with n =
1

2






ǫ(xj-1,k,l) − ǫ(xj+1,k,l)

ǫ(xj,k-1,l) − ǫ(xj,k+1,l)

ǫ(xj,k,l-1) − ǫ(xj,k,l+1)




 (4.6)

holds, fi is reconstructed using Equation (4.5). Here xj,k,l simply denotes the position

of the cell at plane l, row k and column j in the array. Hence, the normal is approxi-
mated with central differences of the fluid fraction in each spatial direction.

Now all DFs for the interface cell are valid, and the standard collision is performed
with Equation (3.4). The density that was calculated during collision, is now used to
check whether the interface cell filled or emptied during this time step:

m(x, t+ ∆t) > (1 + κ)ρ(x, t+ ∆t) → cell filled,

m(x, t+ ∆t) < (0 − κ)ρ(x, t+ ∆t) → cell emptied. (4.7)

An additional offset κ = 10−3 is used instead of 0 or 1 for the emptying and filling
thresholds to prevent the new surrounding interface cells from being re-converted in
the following LB step. Instead of immediately converting the emptied or filled cells
themselves, their positions are stored in a list (one for emptying, another one for filling
cells), and the conversion is done when the main loop over all cells has been completed.

4.3 Flag Re-initialization

This step takes place when all cells have been updated, and to ensure two properties:
the layer of interface cells has to be closed again, once the filled and emptied interface
cells have been converted into their respective types. Additionally, the conservation of
mass has to be maintained during the conversion. While empty and fluid cells have a
mass of exactly zero and one, respectively, interface cells that have filled or emptied ac-
cording to Equation (4.7) usually have an excess mass on conversion. This excess mass
that can be positive or negative needs to be distributed to the neighboring interface
cells.

32 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 4.3: Two animations of a single drop falling into a pool of fluid. The upper row
of pictures uses a domain size of 283 running with an average of 76 frames per second,
while the lower one uses a resolution of 383 with an average frame rate of 27.

First the neighborhood of all filled cells is prepared. All neighboring empty cells are
converted to interface cells. For each of these the average density ρavg and velocity vavg

of the surrounding fluid and interface cells are computed. The DFs of the empty cells
are then initialized with the equilibrium f eq

i (ρavg,vavg). Here it is necessary to remove
any interface cells that are needed as boundary for a filled cell from the list of emptied
interface cells. During the same pass, the flag of the filled cells is changed to fluid.
Likewise, for all emptied cells the surrounding fluid cells are converted to interface
cells, simply taking the former fluid cell’s DFs for each corresponding new interface
cell. Furthermore, the emptied interface cells are now marked as being empty. In a
second pass, the excess mass mex is distributed among the surrounding interface cells
for each emptied and filled cell. mex is equal to the mass of the cell m for emptied cells
(according to Equation (4.7) this value is negative), and is calculated as (m−ρ) for filled
cells.

Negative mass values in emptied interface cells, like the mass values larger than
the density in filled ones, mean that the fluid interface moved beyond the current cell
during the last time step. To account for this, the mass is not distributed evenly among
the surrounding interface cells, but weighted according to the direction of the interface
normal n (which is computed as in Equation (4.6)):

m(x + ∆t ei) = m(x + ∆t ei) + mex(ηi/ηtotal). (4.8)

CHAPTER 4. LATTICE BOLTZMANN SIMULATIONS WITH A FREE SURFACE 33

Here ηtotal is the sum of all weights ηi, each of which is computed as

ηi =

{
n · ei if n · ei > 0

0 otherwise
for filled cells, and

ηi =

{
−n · ei if n · ei < 0

0 otherwise
for emptied cells.

(4.9)

As the mass of the adjacent interface cells changes, the fluid fraction also needs to
be changed accordingly. For the steps described so far it is important that they yield
the same results independent of the order in which the filled and emptied cells are
converted. Thus, the interpolation for empty cells may only interpolate values from
cells that aren’t new interface cells themselves. Once the cell conversions are complete,
the current grid is valid, and is advanced by again starting the main loop over all cells.

4.4 Interface Cell Artifacts

The algorithm described so far is already usable to animate free surfaces. However,
it can happen that single interface cells are left behind when the fluid moves on, or
that interface cells get enclosed in fluid. Although these cases do not perturb the fluid
simulation, they are visible as artifacts. To alleviate these problems the following rules
are added to the algorithm. The basic idea is to force leftover interface cells without
fluid neighbors to empty, and force interface cells without empty neighbors to fill. This
is done by substituting the term (fĩ(x+∆t ei, t)−fi(x, t)) from Equation (4.3) according
to Table 4.1. In rare cases, where these cells still remain interface cells, they are simply
treated as filled or emptied cells. Thus, if a cell has no fluid neighbors and its mass
drops below (0.1 · ρ), it is treated as having emptied in this time step. Likewise cells
with no fluid neighbors and a mass larger than (0.9 · ρ) are treated as having been
filled. In contrast to conventional VOF methods this makes it unnecessary to, e.g., add
an artificial surface tension in order to ensure a proper interface cell layer.

4.5 Interactive Simulations

The capabilities of the algorithm will be shown using four different setups, two with
obstacles, and two without. All four use values of ω between 1.85 and 1.95. Note that
these simulations do not make use of the turbulence model of Section 3.3, and thus
only rely on the adaptive time stepping, explained in more detail in Section 6, to en-
sure stability. The pictures are screenshots from real-time calculations performed on a
standard Pentium 4 CPU (Northwood core) with 3.0 GHz, 512KB Level 2 Cache, and
a state of the art graphics card. The latter, however, was not a limiting factor for the
shown test cases. The number of frames per second can be seen in the upper left corner
of each picture. It includes the calculation of the fluid movement and the visualization
of the surface using a marching cubes algorithm [LC87]. We simply use the fluid frac-
tion values ǫ and triangulate the isosurface at λ = 1/2. This surface generation was
already used in [Thu03], among others. As the values of ǫ are cut off at 0 or 1 for empty

34 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 4.4: A stream of fluid and two drops, in the top and bottom row, respectively, hit
a rectangular container partly filled with fluid. Both are screenshots from the sample
application that allows the user to interactively place the drops.

Figure 4.5: A stream of fluid fills up a Z-shaped domain, with an average frame rate of
26. In the end more than 11000 cells of the 363 grid are filled with fluid.

or fluid cells, respectively, we perform a filtering step before triangulation to acquire
more accurate normals and a smoother appearance of the fluid surface. Including the
triangulation the whole visualization requires ca. 10% of the total computational work
for the shown animations.

The screenshots of Figure 4.3 are from a test case where a single drop is falling into
the center of a pool of liquid. For the bottom row of pictures the size of the compu-
tational domain is 383, with on average more than 10000 interface or fluid cells. This
number, together with the occurring maximum velocities, determines the overall per-
formance. The animation of Figure 4.3 runs with an average frame rate of 27, which
drops to 11 once the waves from all 4 corners of the domain splash together in the
middle, resulting in high upward velocities. Calculating the same animation with a

CHAPTER 4. LATTICE BOLTZMANN SIMULATIONS WITH A FREE SURFACE 35

resolution of 283 (top row of Figure 4.3) and on average more than 4000 used cells re-
sults in a similar fluid motion. In this case the minimal and average frame rate are 35
and 76, respectively. For the 383 case, the simulation itself with 2500 LB steps takes
16.4 seconds on the Pentium 4 system. Using an Athlon 64 4000 with 2.4 GHz and 1MB
Level 2 Cache, the same calculations can be performed in 13.1 seconds. Depending
on the current ratio of interface and fluid cells, the implementation can handle more
than 2 million cell updates per second, and up to 3 million updates on the Athlon 64
system. To gain this performance, it is important to optimize the flag array tests, and
unroll loops over the 19 distribution functions for standard fluid cells.

Screenshots from the interactive demo application are shown in Figure 4.4. Here a
user can paint drops or lines of fluid into the domain with the mouse, resulting in tur-
bulent and chaotic flow patterns. In both cases the average frame rate drops towards
the end of each animation, when around 10000 cells are used. However, with frame
rates between 20 and 30 the application remains very responsive.

Figure 4.5 and 4.6 show animations with obstacles in the domain. In the first case,
fluid is poured into one corner of a Z-shaped domain, filling it with fluid. The second
example is again from an interactive program run, and shows drops of fluid falling
into a bowl shaped obstacle in the middle of the domain. Especially the latter case
results in very complex flows. Here the size of the domain is 443 with up to 6000 cells
being filled with fluid. The average frame rate is over 40 as the fluid always comes to
rest between the subsequent drops. The frame rate is reduced when high velocities are
caused by up to 15 drops hitting the obstacle simultaneously. The simulation, however,
remains stable due to the adaptive time stepping algorithm of Section 6.

The previous examples show that this basic free surface LBM yields efficient and
stable simulations. For resolutions as those used for the animations presented in this
section, the method achieves interactive frame rates. The method is inherently mass
conserving, and typical artifacts of VOF methods can be overcome at the price of a
slightly reduced accuracy. Note that the computational efficiency of a single LB step
means that all additional computations for each step have to be similarly fast. A full
level set initialization and advection, as demonstrated in [TR04], would for example
significantly reduce the efficiency.

Figure 4.6: Several interactively placed drops of fluid hit a bowl-shaped obstacle, re-
sulting in complex splashes.

36 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

CHAPTER 5. MOVING OBSTACLES 37

Chapter 5

Moving Obstacles

In order to simulate interactions of objects with a fluid, the simulation has to at least
handle moving boundary conditions. Hence, the fluid has to be correctly accelerated
and pushed away at the obstacle surface. This represents a one-way coupling between
obstacle and fluid, as forces from the object are transferred to the fluid. If the motion
of the object is itself determined by another simulation, e.g. to handle rigid body colli-
sions or buoyancy effects, a two-way coupling is necessary to also compute the forces
acting on the immersed body due to the fluid flow. The following sections will ex-
plain how to include one- and two-way coupled moving obstacles into LB free surface
simulations.

For other popular fluid simulation algorithms, the treatment of moving and de-
forming obstacles was handled in a variety of ways. In [MST+04] the authors couple an
SPH solver with tetraeder meshes and an finite element solver. For level set based NS
solvers, objects can either be treated as a rigid type of fluid [CMT04], or with a method
proposed in [GSLF05] that is also able to handle thin shells. Another solver type that
works on directly on dynamically changing meshes is described in [KFCO06]. This
approach allows a finer mesh around moving objects, to increase the accuracy of the
simulation. A similar effect can be achieved for the LBM with the technique described
in Section 7.

38 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

5.1 Obstacle Boundary Conditions

The standard way to implement obstacles for LB fluid simulations is the bounce-back
scheme for no-slip boundary conditions. They result in a zero normal and tangential
velocity at the obstacle boundary. In terms of DFs this means that during the streaming
step the DFs are reflected at the obstacle surface, thus Equation (3.1) is changed to

fi(x, t+ ∆t)′ = fĩ(x, t) (5.1)

for all cells where the neighbor along velocity vector ei is an obstacle cell. Note that fĩ

denotes the DF along the inverse velocity vector of fi, thus eĩ = −ei. These boundary
conditions can be used to model ”sticky” walls that slow down the fluid – e.g. rough
stone surfaces.

Another type of boundary conditions are free-slip boundary conditions, which only
result in a normal velocity of zero, but leave the tangential velocity at the obstacle in-
terface unchanged. Hence, during the streaming step of the LBM, the DFs are reflected
only along the obstacle normal, in contrast to Equation (5.1), where they are reflected
along normal and tangential direction. This free-slip scheme is shown to the right of
Figure 5.1. Note that while no-slip boundary conditions can be handled locally for a
cell, free-slip conditions require DFs from a neighboring cell. Furthermore, the free-slip
handling is equivalent to the no-slip boundaries if the neighboring cell in the tangen-
tial direction is not a fluid cell. Free-slip boundary conditions can be used to model
smooth surfaces that do not slow down the fluid, such as glass walls.

To model materials that have properties in between the two extremes described
above, the free- and no-slip boundary conditions can be linearly interpolated. Given
the reflected DFs fr from the free-slip treatment, this gives:

fi(x, t+ ∆t)′ = wpfĩ(x, t) + (1 − wp)fr(x, t) , (5.2)

where wp is the parameter to control the surface smoothness. For wp = 1 Equation (5.2)
reduces to no-slip boundary conditions, while wp = 0 yields a free-slip boundary.

The boundary conditions here have first order accuracy (for arbitrary shapes). Higher
order boundary conditions that take into account the position of the obstacle surface
along each lattice connection, the most common second order one being [BdLL01], can
also be applied to the LBM. These, however, would significantly increase the compu-
tational overhead for moving obstacles, and Section 5.5 will demonstrate that the first
order boundary conditions already give good results.

5.2 Moving Boundary Conditions

If the obstacle is moving, the momentum of the movement has to be transferred to the
fluid, as described in [Lad94]. While the basic no-slip handling from Equation (5.1)
remains the same, an additional forcing term is added during streaming:

fi(x, t+ ∆t)′ = fĩ(x, t) + 2 wi ρf 3 ei · uo, (5.3)

where ρf is the fluid density and uo the obstacle velocity at the obstacle boundary. The
fluid density can be approximated by the initial density, hence ρf = 1.

CHAPTER 5. MOVING OBSTACLES 39

For free-slip boundary conditions, the acceleration should only occur in the nor-
mal direction of the obstacle surface. The velocity to be used in Equation (5.3) is thus
projected onto the surface normal. The forcing term is now only added to those DFs
where the reflection is reduced to Equation (5.1). This is due to the fact that tangential
to the free-slip surface there is no acceleration of the fluid due to the surface smooth-
ness. Thus the fluid adjacent to a free-slip obstacle only needs to be accelerated along
the normal direction. To still keep the flux balance for free-slip boundaries, the ac-
celeration term of Equation (5.3) needs to be multiplied by 2. For free- and part-slip
boundary conditions Equation (5.3) is thus changed to

fi(x, t+ ∆t)′ = wp

(

fĩ(x, t) + 2 wi ρf 3 ei · uo

)

+ (1 − wp)
(

fr(x, t) + wr(x, t) 2 wi ρf 3 ei ·
[
(no · uo)no

])

, (5.4)

where no is the obstacle normal at x. wr is an indicator function that has a value of one
if the streaming of fr reduces to a no-slip reflection, and zero otherwise. The forcing
term is thus only applied during the stream step for DFs such as the center arrow of
the source cell in Figure 5.1 near free-slip boundaries.

While this deals with the obstacle to fluid momentum transfer, the force acting on
the obstacle due to the fluid pressure and movement can be calculated as

Fo =
∆x

∆t

∑

∀xb

19∑

i=1

eiwo(xb + ei∆t)

(

fĩ(xb + ei∆t, t) + fi(xb + ei∆t, t+ ∆t)
)

, (5.5)

where wo(x) is an indicator function that is equal to one when the cell at x is a fluid
cell, and zero otherwise. Here the first sum traverses all boundary cells with position
xb of the obstacle. Equation (5.5) thus approximates the surface integral of the shear
stresses and pressure forces along the obstacle surface. Hence, with Equation (5.3) and
Equation (5.4) the fluid to obstacle coupling is computed, while the combination with
Equation (5.5) enables full two-way coupled fluid simulations.

5.3 Lattice Initialization

Triangular meshes were used to specify the obstacle volumes. For the simulation, the
movement and position information has to be transferred from the triangle mesh to
the LB grid. This is done by creating point samples from the triangle mesh that ensure
a closed layer for the obstacle surface and can furthermore be used to generate velocity
information for the boundary conditions.

Point Samples

The point samples on the mesh surface are not required to be regularly spaced, but
have to ensure that a closed layer of obstacle cells is created for a given LB grid resolu-
tion. No fluid element is allowed to move from one side of a thin obstacle to the other.

40 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 5.1: The different types of boundary conditions for LB obstacles.

Thus, no two fluid cells on opposing sides of an obstacle should be connected by a lat-
tice velocity vector. Depending on the size of a grid cell ∆x a feature size sf = ∆x/2 is
used in the following. Given a triangle with points p1,p2,p3 and normal n, the number
of divisions along the sides are computed as

su = floor(
|p2 − p1|

sf
) , sv = floor(

|p3 − p1|
sf

) . (5.6)

Then the points o on the surface can be computed using barycentric coordinates:

ou,v,1, ou,v,2 =
(

1 − u+ 1/4

su
− v + 1/4

sv

)

p1 +
u+ 1/4

su
p2 +

v + 1/4

sv
p3 ±

1

4
sfn ,

with 0 ≤ u ≤ su, 0 ≤ v ≤ sv, u+ v ≤ 1 . (5.7)

Note that Equation (5.7) creates two points, each of which are offset by the triangle
normal and feature size. Equation (5.6) guarantees that the points have a sufficiently
small spacing in a plane of the grid, while the normal offset of Equation (5.7) ensures
that the obstacle layer has a thickness of one to two cells.

To ensure that a minimum of points is generated, the points p1,p2 and p3 of the
triangle are permuted to ensure that the values su and sv of Equation (5.6) are minimal.
Hence, the two shortest sides of the triangle are used for point generation.

Figure 5.2: Overview of the obstacle initialization for a single triangle of the mesh.

CHAPTER 5. MOVING OBSTACLES 41

Grid Initialization

The whole collection of points P for an obstacle object thus contains the points gen-
erated by Equation (5.7) for all triangles, and the original vertices of the mesh. The
vertices are also offset by ±1/4sfn, and are necessary as su and sv can be zero. This
would mean that no points are generated in the plane of the triangle, but as the trian-
gle is smaller than a single grid cell, its vertices suffice to initialize the LB grid. This,
however, also means that if the mesh is finely triangulated, not all of the vertices would
be necessary for initialization. In this case an external program or suitable software li-
brary could be used to simplify the mesh, possibly according to the feature size. In
general, the method described above assumes that the feature size is usually signifi-
cantly smaller than the average triangle size, which is normally the case for detailed
fluid animations.

For animated meshes it is required that the animation is described by movements
of the vertices, thus the triangle structure itself doesn’t change. Before each time step of
the LBM, the point set P(t) is generated for the current time step. Furthermore either
the point set of the last time step P(t−∆t) can be used, or generated anew. Now a loop
over all points p(t)i in P(t) yields the grid positions of obstacle cells to be initialized
for the current time step. The obstacle velocity u for Equation (5.1) can be computed
with

u =
(

p(t)i − p(t− ∆t)i

)

/∆x . (5.8)

For optimization purposes, the acceleration term of Equation (5.1) can be precomputed
and stored in the LB grid, as obstacle cells do not require DFs to be stored. As often
more than a single point of P maps to one grid cell, these multiple values could be
averaged with appropriate weights. However, as initializing a cell with the first point
that maps to it yields good results – this scheme will be used in the following.

During this pass over the obstacle points the maximum velocity on the obstacle
surface is easily computed, and can be used to adapt the time step size of the simulation
correspondingly. In a second pass of the point set P(t − ∆t) old obstacle cells have to
be removed from the grid. These can be initialized by empty cells, or, if a fluid cell is
in the neighborhood with an interface cell. The latter case is necessary as fluid cells are
not allowed to be in the neighborhood of an empty cell, so alternatively the fluid cell
could be converted to an interface cell.

Mass Conservation

Note that the boundary conditions so far do not conserve mass – due to the approx-
imation of the obstacle boundary with cells, the moving object can cover a different
number of cells during its movement. For flows without a free surface, hence with
completely submerged objects, this is usually unproblematic. However, with free sur-
face flows, this can lead to significant errors in the mass conservation. To alleviate
this problem, the change of mass in the system due a moving no-slip obstacle can be
directly computed as

∆Mo = Madd −Msub +
∑

∀xb

2 wi ρf 3 ei · uo . (5.9)

42 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Here Madd denotes the gained mass from interface cells that are newly created in the
current LB step due to the object movement (as explained in the previous paragraph).
On the other hand, Msub is the mass that was lost from all fluid cells that were reini-
tialized as new boundary cells during the last step. The third component is the sum
of all acceleration terms from Equation (5.1). Note that Equation (5.9) assumes no-slip
boundary conditions, and thus has to be changed as explained above for free- or part-
slip obstacles. By accumulating Mo(t + ∆t) = Mo(t) + ∆Mo for each moving obstacle
in the simulation, the change of mass due to this object can be calculated. A parameter
that can be freely chosen is the fill fraction ǫn for the newly created interface cells from
the pass over the last object position with P(t − ∆t). We now set ǫn = 0 if Mo(t) ≥ 0,
and likewise ǫn = 1.5 when Mo(t) < 0. As the front side of the object removes mass
from the system, the back side can thus be used to control the mass loss. Note that
if further accuracy of the mass correction is necessary, the initialization of all ǫn could
be normalized by the number of new interface cells. This, however, would require a
second pass over these cells.

5.4 Surface Generation

While the fluid can usually be reconstructed directly from the fluid fraction values of
the free surface tracking, the surfaces adjacent to obstacles require additional treat-
ment. As described in the previous chapter, the fluid surface itself is given by the fill
fraction isolevel λ = 1/2. The obstacle initialization as described above will result in
a fluid surface around the obstacle surface without touching it. Thus a separation of
fluid and obstacle surfaces is visible, in contrast to a real fluid that would connect with
the immersed object at the interface and not have a visible surface in the immersed
regions.

This appearance can be achieved by extrapolating the fluid fraction values into the

Figure 5.3: Comparison of the two surface generation approaches. To the left, surfaces
are generated for domain sides and around the submerged obstacle. To the right, these
surfaces are removed with the algorithm described in Section 5.4.

CHAPTER 5. MOVING OBSTACLES 43

Figure 5.4: Test case for moving rigid bodies: a rotating box is lowered into a basin
of fluid. The upper row of pictures uses no-slip boundary conditions for the box, the
middle one part-slip and the lowest one free-slip boundary conditions. An increased
amount of splashes is visible in the lower rows of pictures.

obstacle layer. We thus set fluid fraction values for obstacle cells ǫb in the following
way: ǫb(x) = 1 is used for all obstacle cells at x with fluid, but without interface cell
neighbors. If an obstacle cell has both fluid and interface neighbors, its fluid fraction
value is set to an average fluid fraction with

ǫb(x) =

∑19
i=1wb(x + ei∆t)ǫb(x + ei∆t)

∑19
i=1wb(x + ei∆t)

, (5.10)

where wb(x) is an indicator function that is one if the cell at x is either a fluid, interface
or empty cell, and zero otherwise. In a second pass, all obstacle cells that have not been
modified, and thus are not in the neighborhood of the fluid, are set to ǫb = 0.99λ. This is
necessary as the initialization from Section 5.3 can result in two layers of obstacle cells,
in which case the surface should be moved further inwards to ensure that is inside of
the original mesh.

An example of this modified surface generation can be seen in Figure 5.3. To the
left of Figure 5.3 an image of the uncorrected fluid surface is shown, while the right
side shows the actual moved fluid surface. Note that for transparent objects it will

44 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 5.5: Two-way coupling of the boundary conditions. An object consisting of two
connected sphere is bouncing through a channel filled with fluid. The arrows indicate
the fluid velocity. This simulation was performed by Klaus Iglberger, more information
can be found in [Igl05].

moreover be necessary to clip the fluid surface with the obstacle mesh to hide the inner
parts while retaining an exact connection of the fluid surface with the obstacle.

5.5 Results

In the following three different simulations for the algorithm described above will be
presented. The first, and relatively simple, test case with a rigid moving object can be
seen in Figure 5.4. Here a simplified ”mixer” is modelled – a box is lowered into the
fluid while rotating along the y axis. This simulation was performed with a resolution
of 1283 and a viscosity of water. The simulation took 27 seconds per frame on average.
This time per frame, as well as the following timings of this section, were measured
on a standard workstation with a Pentium4 CPU (3.0GHz). Each row of pictures uses
different boundary conditions for the obstacle. From top to bottom the boundary con-
ditions are: no-slip, part-slip with wp = 0.002 and free-slip. As the effect of wp is highly
non-linear, the weight has to be small in order to show a noticeable effect of the free-slip
boundary conditions. It can be seen that the fluid is correctly accelerated and pushed
away by the rectangular shape. The free-slip simulation exhibits a larger amount of
splashes, as there is less slowdown in tangential direction. As expected, the part-slip
boundary conditions lie in between the two other cases.

A different setup to test the two-way coupling of the moving boundary conditions
is shown in Figure 5.5. Here an moving object consisting of two connected sphere is
pushed through a channel with fluid and two fixed rectangular obstacles. The object
is accelerated up to the fluid velocity, then bounces through the two fixed obstacles.
In this case a simulation resolution of 60 × 30 × 30 was used, with no-slip boundary
conditions for all obstacles. Due to the small size, the total simulation only took ca.
15 seconds. The boundary conditions for deforming meshes are demonstrated in Fig-
ure 5.6, where an animated character is interacting with the fluid. The simulation with
a resolution of 166×166×200 took on average 244 seconds per frame, and the obstacle
initialization with more than 125k points for the 5038 triangle mesh ca. 7% of the time
for each LB step.

The method thus efficiently extends a free surface LB simulation to handle mov-
ing and deforming obstacles. The boundary handling furthermore ensures a closed

CHAPTER 5. MOVING OBSTACLES 45

obstacle cell layer for thin shells. In the future it would be interesting to couple the
simulation to a full rigid body simulator, and handle additional effects such as objects
with phase transitions [MKN+04, LIG06] or even fracturing [PKA+05].

Figure 5.6: Example of a deforming mesh from an animated character interacting with
the fluid.

46 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

CHAPTER 6. ADAPTIVE TIME STEPS 47

Chapter 6

Adaptive Time Steps

The stability of the turbulence model from Section 3.3 is transferred directly to the free
surface simulations, hence enabling the computation of free surface flows with high
Reynolds numbers, and values of τ close to 0.5. A remaining source of instability,
however, is the problem of lattice velocities becoming too large during the course of
the simulation. The method that will be presented in this section can be used to speed
up and stabilize these simulations. It uses a reparametrization of the LB simulation
that effectively changes the time step size and Mach number. After an explanation
of the algorithm, it will be validated by accuracy measurements for two-dimensional
and three-dimensional simulations. Examples of the speed up that can be achieved by
adaptive time steps will moreover be given.

6.1 Adaptive Parametrizations and Mach Numbers

Simulation configurations for free surface simulations usually exhibit a highly varying
range of velocities. As the LBM intrinsically limits the maximum velocity of a cell, a
setup like this usually requires a time step that is sufficiently small to assure that the
largest occurring velocities remain valid during the course of the simulation. To alle-
viate this restriction, a technique to adaptively modify the parameterization to change
the time step size will be presented in the following. This also results in a change of
the Mach number Ma = u/cs, as the grid size and thus the speed of the information

48 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 6.1: Here several frames of the simulation setup for the second test case from
Section 6.2 can be seen. A drop of fluid falls into resting fluid in a square computational
domain. In this case the grid resolution is 2562.

propagation (determined by cs) stay fixed, but the velocities u are rescaled. However,
it will be shown in Section 6.2 that this does not significantly disturb simulations such
as gravity driven free surface flows. Other problems, however, that might require a
fixed Mach number will not be able to make use of this approach. Given a fluid vis-
cosity ν and an acceleration force g a maximum time step size ∆tmax can be calculated
with Equation (3.9) On the other end, the minimum size of a time step is limited by the
stability of the LBM. For a BGK model τmin ≥ 0.51 was chosen. Given the kinematic
viscosity of the fluid ν and τmin, the lower limit of the time step can be computed as

∆tmin =
2τmin − 1

6ν
. (6.1)

However, with the use of the turbulence model from Section 3.3 the limitations of the
BGK model are overcome. In this case, ∆tmin = 0 can be used, as the turbulence model
compensates the stability problems of small τ values. Thus, there is effectively no limit
to decrease the time step size.

During each LB step, the current maximum velocity umax is computed. As a thresh-
old for the velocity |uthresh| = 1/6 is used, which is half of the speed of sound chosen
for D2Q9 and D3Q19. The speed of sound thus represents the upper limit of the lattice
velocity to simulate weakly compressible flow. If umax exceeds this threshold during
the course of the simulation, the following procedure to stabilize the simulation again
is performed. If the velocities become too large, this will result in a smaller time step
size, while for small umax the parameters are changed to have the simulation perform
larger time steps. The size of the new time step can the be determined by

∆tn = |uthresh|/|umax| . (6.2)

In the following, a subscript of o will denote values before the rescaling procedure,
while n will denote values for the new parameterization. Hence, to is the size of the
time step previously used for the LBM. To account for the new time step size, the
hydrodynamic moments as well as the acceleration force have to be rescaled by s =

CHAPTER 6. ADAPTIVE TIME STEPS 49

∆tn/∆to:

ρn = (ρo − ρref)s+ ρref

un = uos

gn = go s
2 (6.3)

Here ρref denotes the current reference density of the simulation, which has to be cal-
culated from the total fluid volume V and the overall mass M as ρref = V/M . V is
calculated by the sum of all fluid fraction values ǫ (which are equal to one for fluid
cells), while M is computed as the sum of all cell masses. Thus for interface cells m
and for fluid cells ρ is used. The deviation of the cell densities from the reference den-
sity needs to be rescaled, as the changed force gn requires an adaption of the density
gradient. This rescaling furthermore changes the values of m and ǫ for interface cells:

mn = mo(ρo/ρn) ,

ǫn = mn/ρn . (6.4)

Since the relaxation time depends on the size of the time step, the non-equilibrium
parts of the distribution functions have to be rescaled, similar to the rescaling for sim-
ulations using differently refined grids as in Section 7 or [FH98, CKTR03]:

f ′
i = [f eq

i (ρo,uo) + (fi − f eq
i (ρo,uo)) sτ] sfi

, (6.5)

where sτ and sfi
are calculated as:

sτ = ∆tnτn / ∆toτo ,

sfi
= f eq

i (ρn,un) / f eq
i (ρo,uo) . (6.6)

Here the factor sτ corresponds to the non-equilibrium scaling factor from [FH98], while
the additional scaling by sfi

is necessary to account for the changes of velocity and
density. sτ is thus equal for all cells and lattice directions i. The factor sfi

, on the other
hand, depends on i and can be different for each cell. The scaling by sfi

is required
to make the DFs of the cell represent the velocity un and deviation from the median
density ρn required by the new parameterization.

Instabilities due to τ being almost 0.5 are alleviated by applying the turbulence
model. This in turn requires a modification of Eq. 6.5, as the non-equilibrium scaling
of the adaptive time steps depends on the relaxation time τ . With Equation (3.10), the
lattice viscosities νn and νo for the old and the new time step are calculated. Eq. 3.6,
3.7 and 3.8 can then be used to compute the modified local relaxation times for each
cell, τs,n and τs,o, with νn and νo. Equation (6.5) must be modified to include the local

Table 6.1: Effect of the parameter change for a drop falling 2.5 times its radius. The
average fill fraction Deviation E is shown for each grid size, measured in comparison
to a simulation without any parameter changes.

Grid Size 48 64 96 128 192 256

E 0.000757 0.000357 0.001034 0.000542 0.000428 0.000537

50 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

relaxation time from the turbulence model. This is done by calculating the scaling
factor sτ using the local relaxation times as

sτ = st(τs,n / τs,o). (6.7)

Combining the turbulence model and the adaptive time steps in this way enables the
simulation of high velocities without stability problems. Nevertheless, small time steps
require more LB steps to compute the solution. Section 7, below, will demonstrate how
to combine the techniques presented so far with an algorithm to adaptively coarsen
the computational grid inside of the fluid domain with the goal of reducing the com-
putational effort required for each LB step.

Note that the steps described so far require roughly as many computations as a col-
lision step. Thus, the rescaling is only performed when |umax| is larger than |uthresh| · ξ
or smaller than |uthresh|/ξ, where ξ is used to control the amount of time step changes.
A value of ξ = 5/4 is used here. It also needs to be prevented that the time step is
decreased right after it was enlarged. This, in contrast to decreasing the time step size,
is uncritical, as it is ensured that no high velocities currently appear in the simulation.
A delay of four times the grid resolution in time steps yields good results here. As
the time step is infrequently changed in comparison with the number of LB steps, it
requires very little computational time (less than 1% for the presented simulations).
The method can also be applied to flows without a free surface or without forcing.
However, depending on the problem the advantages might disappear, e.g. due to con-
stantly high velocities. Thus, the following chapter will present results for test cases
where the method is applicable.

6.2 Validation and Performance

The correctness of the following simulations will be determined by comparing E , which
is the average deviation of the fluid fraction values ǫ over all cells. The fluid fraction
deviation measurement effectively compares the difference of the position of the free
surface for two given configurations. If the configurations are completely different,

64 96 128

Radius

0

0.01

0.02

0.03

A
ve

ra
ge

 F
ill

 F
ra

ct
io

n
D

ev
ia

tio
n

Fixed large time steps
Adaptive time steps
Fixed small time steps

2D Drop & Standing Fluid

48 64 96

Radius

0

0.005

0.01

A
ve

ra
ge

 F
ill

 F
ra

ct
io

n
D

ev
ia

tio
n

Fixed large time steps
Adaptive time steps
Fixed small time steps

3D Drop & Standing Fluid

Figure 6.2: Results for the test case of Figure 6.1 in two dimensions to the left, and three
dimensions to the right.

CHAPTER 6. ADAPTIVE TIME STEPS 51

its value will be close to one, while values close to zero indicate a similar shape of
the fluid. The measurements are normalized by the total number of measured points
to compare simulations of different sizes, and average the measurements at different
times during the course of the simulation. The fluid fraction deviation values are thus
computed as

E =
1

ttotal

1

ntotal

ttotal∑

t=1

∑

x∈Ω

|ǫref(x, t) − ǫ(x, t)| , (6.8)

where ǫref are the fluid fraction values of the corresponding fine-resolution reference
simulation, Ω is the size of the domain ranging from 0 to 1 in each spatial dimension,
and ttotal is the number of timesteps to average over. Likewise, ntotal is the total number
of chosen points where E is measured at. For example Table 6.1 was generated using
points in 64 intervals along each axis, thus using ntotal = 4096 points in total.

A first two-dimensional test to validate our rescaling procedure is a falling drop
of radius 0.1 (the size of the computational domain being 1.0) falling for 2.5 times its
radius. During the course of this movement the parameterization is changed 6 times
(for a resolution of 482) to 9 times (for a resolution of 2562). These simulations use a
uthresh = 0.05, which causes more parameterization changes than really necessary, and
were compared to a simulation using the same resolution with a fixed parameteriza-
tion. In Table 6.1 the results of these experiments are shown. It can be seen that the
values of E are independent of the actual resolution. Furthermore, the shape of the
drop is not disturbed by the rescaling, which is evident from the very small deviations,
with usually E < 0.001.

A more realistic test case is shown in Figure 6.1. Here a drop with radius 0.1 is
falling into a resting fluid of height 0.25. The results for experiments with various grid
sizes in 2D can be seen on the left in Figure 6.2. Here each group of three fill fraction
deviation values shows a comparison of different time step parametrizations. One of
the three simulations used for comparison is run with a large time step (left bars), the
next with adaptive time stepping (middle bars), while the last simulation (right bars)
uses the smallest time step used in the corresponding simulation with adaptive time
steps. The E values for each grid size shown in the graph were computed by a refer-

Figure 6.3: A simulation of a falling drop with a grid resolution of 2403 requiring less
than 6800 steps, in contrast to more than 16000 that would have been necessary to run
the simulation with the smallest time step.

52 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

ence simulation with twice this resolution parameterized to run with a small time step.
Thus the left- and rightmost bars for each test case use parameterizations according to
the largest and smallest time step sizes used during the course of the simulation for the
middle bars. The simulations with lattice resolution 642 were initially parameterized
with ω = 1.87, g = (0 , −5.34 · 10−4) running for approximately 1000 steps. For the
larger grid resolutions the parameters were scaled to keep the Reynolds number con-
stant (hence for the test cases with a 1282 resolution ω = 1.678). As the graph shows, the
parameterization changes for time step and Mach number adaption yield the expected
results lying close to the both extremes of parameterization.

The right graph in Figure 6.2 shows results for running the previous test case ex-
tended to 3D. The only difference here is that due to memory limitations the reference
simulation uses 1.5 times the shown grid resolution, instead of the factor 2 for the 2D
cases. Again the results with adaptive time steps lie in the expected range. Note that
these test cases were chosen to ensure that even the initial large time step size remains
stable. The method presented here also allows the stabilization of simulations were the
occurring velocities cannot be determined from the start. In these cases the parameter-
ization will be automatically changed in order to stabilize the simulation. The method
can then save significant amounts of computational time by reducing the number of
necessary LB steps. As an example, the simulation shown in Figure 6.3 requires 6757
LB steps with adaptive parameterization while running the simulation with the small-
est time step size would have required 16200 steps. Thus, using the method presented
here, this test case runs 2.4 times faster than without it. While not all simulations will
benefit this much, they will not run slower using the adaptive parameterization, as the
computational cost for checking whether to perform a parameterization change or not
is negligible in comparison to the cost of each step.

CHAPTER 7. ADAPTIVE GRIDS 53

Chapter 7

Adaptive Grids

This section will first give an overview of the standard approach to LB simulations
on multiple grids. Afterwards the adaptive coarsening algorithm will be explained
– its goal is to efficiently compute the motion of the free surface. Thus, the criterion
for coarsening is given by the distance to the free surface. In Section 7.3, the accuracy
of the method will be validated with an error metric that measures the difference of
two free surface positions. Afterwards performance measurements for two different
simulation setups with varying grid resolutions will be presented.

7.1 Grid Refinement

In [FH98], Filippova et. al developed an algorithm to couple LB simulations of dif-
ferent resolutions. The coupling of the different grids is done by setting boundary
conditions for adjacent grids in transfer cells. This transfer of information between the
grids requires a rescaling of the DFs similar to Eq. 6.5. In addition, the values have
to be interpolated in space and time for the transfer from coarse to fine grids. This
approach is usually used to refine a simulation grid around regions of interest, to save
computational time by using a fine grid in this region only, or alternatively to increase
the accuracy of the computation by refining the grid in important regions. This method
has e.g. been used in [YMLS03] to compute simulations of an airfoil on a grid with re-
fined blocks. M. Rohde recently proposed an alternative approach for grid refinement

54 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 7.1: This picture shows an example of a coarsened fluid region near the free
surf ace with 2 levels of coarser grids. To the left the transfer cell layers for coupling
adjacent levels can be seen.

with the LBM, see [Roh04] for details. However, as this method requires an addi-
tional filtering step to ensure stability, this work is based on the algorithm described in
[FH98].

Figure 7.1 illustrates how the transfer between a fine and a coarse grid is realized.
In the following, c and f subscripts will denote variables on the coarse and fine grids,
respectively. Hence, the DF fc,i is a coarse grid distribution function for the direction
of the velocity vector ei, with ff,i being its counterpart on the fine grid. As can be
seen in Figure 7.1, the grid spacing ∆xc and ∆tc on the coarse grid are twice those of
the fine grid. According to Eq. 3.11 this means that the relaxation time needs to be
calculated with the corresponding parameters for each grid. Reformulating Eq. 3.11

Figure 7.2: Here the effect of the different time step sizes for multiple simulation grids
is shown. The numbers indicate the order in which the steps are performed. Dashed
arrows indicate interpolation, while straight arrows from one circle to another repre-
sent LB steps with the indicated time step length.

CHAPTER 7. ADAPTIVE GRIDS 55

and 3.10 using ∆xc = 2∆xf , the relaxation time for the coarse grid is calculated by

τc =
1

2
(τf − 1

2
) +

1

2
. (7.1)

In Figure 7.1 two kinds of transfer cells are shown: one for transfer from fine to the
coarse grid, and vice versa. Due to the arrangement of the grids, the fine grid cells
lie at the same position as the coarse grid nodes, thus data for a cell of the coarse grid
transfer cells is taken directly from the corresponding fine grid cell. As the macroscopic
properties such as pressure and velocity of the fluid are the same on both grids, these
are not changed during the transfer. However, due to the different relaxation times,
the non-equilibrium parts of the DFs have to be rescaled with

fc,i = f eq
f,i + scf

[
ff,i − f eq

f,i

]
, (7.2)

where scf is calculated as

scf =
2(τc − 1)

(τf − 1)
. (7.3)

Note that Eq. 7.3 has a singularity for τf = 1. This is, however, unproblematic for
turbulent flows, as the low viscosity will always result in values of τ close to 1/2. For
a transfer in the other direction, from the coarse to the fine grid, Eq. 7.2 becomes

ff,i = f eq
c,i +

1

scf

[
fc,i − f eq

c,i

]
. (7.4)

Likewise, yellow fine grid transfer cells (marked with an filled downward arrow) again
lie at the same positions as coarse grid cells, thus their DFs are transferred directly with
Eq. 7.2. However, especially in three dimensions, most of the fine grid transfer cells are
those marked with an outlined downward arrow. For these, the information from the
coarse grid has to be interpolated spatially. Hence, instead of the values fc,i and f eq

c,i of
Eq. 7.2, the DFs of the coarse grid are first interpolated to compute the corresponding
values at the position of the fine grid cell. As described e.g. in [YMLS03], a second
order interpolation is usually performed spatially.

In addition to saving operations by reducing the total number of computational
cells, the number of time steps to be performed on coarser grids is reduced, as each
time step on a coarse grid is twice as large as that of the next finer grid. Thus for two
fine grid LB steps, only a single one has to be performed on the coarse grid. This,
however, means that for one of the two fine grid steps, the grid transfer also has to
include temporal interpolation of first or second order. An overview of the basic time
step scheme for a total of three coupled grids is given in Figure 7.2.

7.2 Adaptive Coarsening Algorithm

In this thesis the view is taken that the simulation is defined by a global uniform fine
grid that can be augmented with auxiliary coarser grids to accelerate the computation
– at the price of a possibly reduced accuracy. This adaptive coarsening will be described
in the next paragraphs. It will be shown how to adaptively perform a coarsening of

56 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

the fine grid simulation using a set of cell flag based rules, and how to ensure stability
of the transfer between the different grid levels.

For dynamic problems, such as free surface flows or flows with moving obstacles,
the techniques described in Section 7.1 cannot be applied without modifications. In
[CKTR03] and [Kra01] an algorithm based on the work of Filippova et. al is used to
increase the accuracy of a simulation by adaptively refining the grid around an obsta-
cle or a bubble in the fluid. As this work is focused on the simulation of free surface
flows the region of interest, that needs to be accurately computed, is the free surface
itself. Hence, the simulation of this surface is performed on a fine computational grid,
while the accuracy of the computation inside of the fluid may be less important. In the
following an approach to adaptively coarsen the grid inside of large fluid regions by
dynamically changing a set of coarser grids according to the movement of the surface
on the fine grid will be described. The criterion for coarsening is thus given by the dis-
tance of a cell to the free surface. An alternative would be to allow also the coarsening
of smooth free surface regions with few details. However, this would cause problems
for the mass conservation with the mass flux given by Eq. 4.3 and make generating a
triangulated surface more complicated.

It is thus ensured that all interface cells are treated on the finest grid. Likewise,
obstacle boundaries are calculated on the finest grid. Similar to the notation used in
multi-grid literature [TOS01], the fine to coarse grid transfer will be denoted with re-
striction, while the coarse to fine grid transfer will be denoted with prolongation.

Boundary Cell Conversion

To adapt the coarse grids to the movement of the free surface, while keeping the trans-
fer cell layers consistent, a set of rules to determine when to refine or coarsen a grid
region was developed. The handling of the adaptive coarsening requires five passes in
total, each of which, however, only applies to a single type of transfer cell. For these
flag checks access to its neighborhood flags and its neighborhood flags on the next
finer grid are necessary. The first three passes handle refining the coarse fluid regions,
e.g. when the free surface comes near the coarsened grid region, while passes four and
five handle coarsening fluid regions where the free surfaces has moved away from. It
would be possible to perform some computations of the passes in parallel, but they
only take a small part of the overall computational time, as will be explained in more
detail in Section 7.4. Hence, in accordance to the implementation, each pass will be
explained as a separate sweep over the cell flags. In the following, the five cell types
shown in Figure 7.3 will be distinguished: fluid, unused, from-fine, from-coarse and
to-fine.

The following rules are applied to all coarse levels. For the first level of coarsening,
it is ensured that the coarsened region keeps a distance of one cell layer to the free
surface, while subsequent coarsened levels ensure that they keep a distance to the re-
striction region of the next finer level. The following explanation will therefore focus
on from-fine and to-fine cells, which are equivalent to interface cells for the finest coarse
level. Due to the alignment of grids as described in Section 7.1 the fine grid neighbor
cf of a coarse grid cell cc at position (i, j, k) is obtained by accessing cell (2i, 2j, 2k) on
the fine level.

CHAPTER 7. ADAPTIVE GRIDS 57

Figure 7.3: The five different cell types required for grid transfer.

Pass 1: During the first pass, from-fine transfer cells on the coarse grid are checked
for consistency. They are removed if the fine grid cell is not used for interpolation to
a finer grid itself. Thus, if cf is a from-fine or to-fine cell, cc is converted to an unused
cell. In this case fluid cells in the neighborhood of cc have to be converted into from-fine
cells, to ensure a closed transfer cell layer.

Pass 2: The second pass checks whether there are any unnecessary from-coarse cells.
It only affects the coarse grid layer. One of these cells can be converted to a fluid
cell when there are no unused cells in its neighborhood. Hence, the transfer cell is
not required in the prolongation region. Likewise, a from-coarse cell can be turned to
unused, if none of its neighbors are fluid cells. A special case for from-coarse cells is
necessary to prevent a double transfer between grids. It is not desirable to to have two
from-coarse cells at the same position on different grids. Thus for a from-coarse cell cc,
it has to be checked whether cf is a from-coarse cell as well. If this is the case, cc has to
be converted into a fluid cell, reinitializing its neighborhood to keep a closed layer of
from-coarse cells.

Pass 3: After this, from-fine cells are checked for conversion to fluid cells. This has
to be done when the corresponding fine grid cell is a from-coarse cell, meaning that the

Figure 7.4: Pass 1.

58 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 7.5: Pass 2.

finer grid transfer layer has moved away from the prolongation transfer layer on the
coarse grid. In consequence, the from-coarse transfer cell layer of the finer grid has to be
updated, turning from-coarse and fluid cells in the fluid region of the coarser grid into
unused cells, and adding new from-coarse cells at the moved border.

These three passes are enough to ensure a refinement of coarsened regions when
there is an inward movement of the free surface and the prolongation regions. The
next two passes are similarly used to handle moving the restriction regions outwards,
once the free surface moves away from it. Thus, passes four and five handle coarsening
the computational grid.

Pass 4: For the coarsening it is first necessary to check whether an empty cell is a
candidate for a from-fine transfer. This is the case if its fine grid neighbor is a valid fluid
cell, and not a from-fine or to-fine cell. The empty cell is then turned into a from-fine
transfer cell and initialized by a transfer of the DFs from the fine grid.

Pass 5: The last pass thus checks whether a from-fine cell can be converted into a
fluid cell, coarsening the region around it. This is possible when all fine grid neighbors
are valid fluid cells, not from-fine or to-fine transfer cells. Furthermore, the neighbor-
hood of the from-fine cell on the coarse level must not contain any unused cells. If
these criteria are met, the from-fine cell is turned into a fluid cell. Due to the previous
checks, its neighborhood is already valid. Afterwards, all fine grid cells lying between
the coarse grid cell and its neighbors have to be checked to reinitialize the from-coarse
transfer cell layer. Fine grid cells in the center of eight valid fluid coarse grid cells are

Figure 7.6: Pass 3.

CHAPTER 7. ADAPTIVE GRIDS 59

Figure 7.7: Pass 4.

directly turned into unused cells. Fine grid cells lying between fluid cells on the coarse
grid have to be converted to from-coarse cells, while remaining from-coarse cells without
fluid neighbors are removed from the simulation by setting them to unused.

Although the cell conversion does require 5 passes in total, the neighborhood checks
are confined to small regions as linear instead of second-order spatial interpolation is
applied for the prolongation. This is essential for the simplicity and efficiency of the
conversion rules, as irregularities of the coarse grid transfer layer for the free surface
would otherwise require checks in large neighborhoods of the from-coarse transfer cells.
In Section 7.3 it will be shown that the accuracy of the linear interpolation is computa-
tionally sufficient by comparing it directly to a second order interpolation.

Grid Transfer

These conversion rules are checked before each coarse grid step. They are enough to
ensure a valid and closed layer for both restriction and prolongation. As direct trans-
fers across multiple grid levels are prevented, and the restriction transfer layer of the
first coarsened level does not cover interface cells, the resulting simulation regions
usually span 2-3 fluid cells between their transfer layers. After adapting the grid, re-
striction and prolongation are performed to set correct boundary conditions for the
actual LB step.

Figure 7.8: Pass 5.

60 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

The transfer of DFs on the boundaries is done by including the modified relaxation
time of the turbulence model in Eq. 7.2. After interpolation of the DFs, the modified
relaxation times τsc and τsf are calculated with Eq. 7.3 using the viscosities νc and νf ,
respectively. Finally, the scaling factor scf is calculated with

scf =
2(τsc − 1)

(τsf − 1)
, (7.5)

and used instead of Eq. 7.3 for the transfer scaling factor in Eq. 7.2 and Eq. 7.4.
A remaining problem of the algorithm discussed so far is, that simulations with

low viscosities are disturbed by artifacts that are caused by the overlapping grids. An
example of this problem can be seen in Figure 7.9. The artifacts are caused by pressure
fluctuations near obstacles and become noticeable as self-reinforcing patterns at the
grid boundaries that cause strong disturbances of the flow field. The problem here is
that according to the description of Section 7.1 the restriction is done using a single fine
grid cell, analogous to injection in a multi-grid algorithm. The resulting information is
used on the coarse grid, and during the subsequent steps propagated to the fine grid
again two cells further in the fluid region at the from-fine transfer cells. To break up this
pattern of information flow, a restriction that takes into account all fine grid cells within
the fine grid neighborhood of a coarse grid cell is used. This is shown on the right side
of Figure 7.9 for a two-dimensional example. Thus, the cells that were previously not
taken into account for the restriction also contribute to the coarse grid transfer cells.
For interpolation a simple gauss kernel gives good results. Thus, the interpolated DFs

f̃f,i to use with Eq. 7.4 are calculated as

f̃f,i(x) =
19∑

α=1

ff,i(x + eα)
wα

wtotal
(7.6)

with

wα = e−|eα| − e−2·3, wtotal =

19∑

α=1

wα (7.7)

Figure 7.9: Example of artifacts that occur for a simple standing fluid test case with
a resolution of 1282 and two coarse levels. Each picture shows the density distribu-
tion in the lower left corner of the fluid, where green values indicate ρ = 1.0 while a
red color indicates larger values. The upper row of pictures was created without any
interpolation for the prolongation, while the lower row makes use of Eq. 7.6.

CHAPTER 7. ADAPTIVE GRIDS 61

This interpolation requires more accesses to fine grid DFs for restriction, but effectively
prevents the development of the artifacts described above.

In conclusion, the algorithm proceeds with the following steps for all levels that are
advanced at a given time:

1. Start with coarsest grid level.

2. Adapt the grid:

(a) perform refinement passes 1,2 and 3,

(b) perform coarsening passes 4,5.

3. Set the boundary conditions with restriction and prolongation.

4. Perform the LB step (for the finest level this includes handling the free surface).

5. Continue with the next finer grid.

The accuracy of both the interpolation scheme and the adaptive coarsening algorithm
will be evaluated in the next section.

7.3 Validation

The accuracy of the different grid transfer methods will be determined as explained
in Section 6.2 by measuring the fill fraction deviation E from a reference simulation
averaged over time and a certain number of measurement points. In Figure 7.11 the
grid resolution of the reference simulation was used to set the number of measurement
points. Note that E , in contrast to error metrics from the multi grid literature, does not

Figure 7.10: Falling drop test case setup for interpolation accuracy measurements with
static coarsening.

62 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 7.11: Accuracy measurement for the interpolation test case of Figure 7.10.

measure the error caused by representing the problem on a coarser grid, but only the
position of the free surface.

The following test cases were parametrized to represent a cubic domain of 0.1m
length with water and earth gravity. Hence, ν ′ = 1−6 [m2/s] and an acceleration of
g′ = (0,−9.81, 0)T [m/s2] are chosen.

Static test case

The different interpolation methods will be tested using the simulation setup described
on the left side of Figure 7.10. In Figure 7.10 the domain with a side length of 1.0 is filled
60% with fluid. A drop placed at height 0.8 with radius 0.1 is accelerated by a gravi-
tational force to fall into it. Several pictures from a two-dimensional simulation with a
resolution of 1922 can be seen on the right side of Figure 7.10. In three dimensions, the
drop is converted to a cylinder with rounded edges, to match the two-dimensional test
case. As indicated in Figure 7.10 the test cases use a fixed coarsening of the lower half
of the domain, to reduce any influences of dynamic changes of the coarsened region
during the course of the simulation. The two coarse grid regions are visible as lighter
areas. The free surface comes close to the coarsened regions, but the setup was chosen
to keep it at a distance that ensures correct calculations with a static coarsening.

Figure 7.11 shows results in two and three dimensions, to the left and right, respec-
tively, each for three grid resolutions. The reference simulation is a simulation run on
an uncoarsened grid with the shown resolution. The coarsened simulation is run three
times with the following interpolation methods:

A) without temporal interpolation and with linear spatial interpolation,

B) without temporal interpolation and with second order spatial interpolation,

C) with linear temporal and second order spatial interpolation.

CHAPTER 7. ADAPTIVE GRIDS 63

Each of these runs was performed with two levels of coarsening – one with halved,
and the coarsest one with 1/4 of the original resolution. For reference, the simulation
is also run once on a grid with half the shown resolution (referenced as coarse in the
following) and without any additional coarsened grids.

Throughout the runs it can be seen that the adaptively coarsened simulations are
significantly more accurate than the corresponding runs with halved resolution. Fur-
thermore, there is only a slight difference between the different interpolation variants.
The interpolation method C is the most accurate one, as was expected. The other two,
however, only show small decreases in accuracy. This can be attributed to the fact
that for the coarsened grids the free surface and the obstacles are still calculated on
the finest grid everywhere. These regions determine the overall motion of the fluid.
Thus, in contrast to test cases such as [YMS02], the coupling with the coarser grids is
sufficiently accurate without the temporal interpolation, and more importantly, with-
out second order spatial interpolation. Former allows us to use the grid compression
technique [PKW+03] on all grids, as only a single time step needs to be stored in mem-
ory. It also saves one third of the total memory accesses that are required to interpolate
the coarse grid DFs to the fine grid, as for each second interpolation step the tempo-
ral interpolation would require access of two DFs instead of one. The linear spatial
interpolation greatly simplifies the handling of the grid adaptivity, and significantly
reduces the number of memory accesses. For linear interpolation, fine grid cells that
lie between 2, 4 and 8 coarse grid cells require the same number of DF accesses for each
interpolated one. With second order spatial interpolation, it would, however, require
4, 16 and 64 DF accesses, respectively. For the test case described above with a grid
resolution of 1283 this means that on average only 130773 DFs have to be accessed and
interpolated for method A, instead of 363253 for interpolation method B.

Figure 7.12: Breaking dam test case setup for accuracy measurements for the adaptive
coarsening procedure.

64 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Dynamic test case

To validate the accuracy of the adaptive coarsening technique described in Section 7.2
the breaking dam setup described in Figure 7.12 was used. The domain is filled with
a region of fluid in the lower left corner, taking up a quarter of the domain volume.
The gravity causes the fluid to splash against the upper right corner, and form a wave
travelling back towards the left wall. This fluid movement obviously requires constant
updates of the coarsened region.

Accuracy measurements of E computed with Eq. 6.8 are shown in Figure 7.13. Here
again a coarse simulation with half the shown resolution and an adaptively coarsened
simulation (using interpolation method A) are compared to a simulation run on a ho-
mogeneously fine grid. It can be seen that the accuracy of the adaptive simulations
is slightly less than the accuracy of the static test cases with coarser grids. However,
throughout the runs they are more accurate than the coarse simulation, while requiring
significantly less LB cells than the fine simulation. Still, the free surface is represented
with the same amount of details as the fine simulation. The next section will show
performance results of simulation runs to illustrate the speedup that is possible using
the adaptive coarsening method.

7.4 Performance

Before analyzing the overall performance, it is important to know how the workload
is distributed between the different parts of the algorithm. Thus, a run of the test case
shown in Figure 7.14 was profiled. It was parametrized with a resolution of 2563 and
run on a single Opteron CPU for 2500 LB steps. The adaptive coarsening algorithm
was used for 3 coarse levels in addition to the finest one.

As can be seen in Table 7.1, the majority of the computations are necessary for

Figure 7.13: Accuracy measurement for the adaptive coarsening test case of Figure 7.12.

CHAPTER 7. ADAPTIVE GRIDS 65

Figure 7.14: Images of the falling drop simulation with a grid resolution of 4803 and
the adaptive coarsening algorithm.

advancing the finest grid and computing the free surface boundary conditions. The
adaptive coarsening itself requires more computational effort than the LB steps on the
coarse grids themselves. This is due to the fact that the coarse grids usually only con-
tain relatively few fluid cells, and the adaptive coarsening includes the calculation of
the grid transfer, which for a single cell requires computations similar to a normal LB
cell update.

Usually, the performance of LB programs is measured with the number of cell up-
dates per second: MLSUPS (million lattice site updates per second). However, this is

66 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Table 7.1: Workload distribution for an exemplary simulation.

Procedure Workload percentage

Fine grid LB steps 73.46%
Adaptive coarsening 14.27%
LB steps of all coarse grids 7.25%
Other code 5.02%

not valid anymore once coarsened grids are involved due to the differing cell sizes and
constantly changing number of overall cells. In this case, it is crucial how much faster
the overall simulation is done with the adaptive grids, in comparison to a standard
simulation using a single grid level. The following tables shows several MLSUPS mea-
surements only to illustrate the performance of the implementation without adaptive
coarsening for a falling drop test case as shown in Figure 7.14.

Table 7.2 shows that the basic LB implementation yields a high performance on a
variety of CPU architectures. For the OpenMP version the Intel compiler was usedA,
while the other serial measurements were performed with GCCB compilations. A high
performance of the serial version is important, as a poor implementation might yield
larger speedups when combined with the adaptive coarsening technique – even when
the overall performance is bad. Note that other highly optimized codes, such as pre-
sented in [Igl03, Don04], achieve MLSUPS rates more than twice as high as those given
in Table 7.2. However, these codes usually only consider the basic LBM with bounce
back boundary conditions. The MLSUPS measurements from Table 7.2 on the other
hand include several extensions that influence the absolute performance: the free sur-

AIntel Compiler Version 8.1, which produced the fastest code on this machine in comparison to other
versions which were available.

BGnu Compiler Collection, Version 4.0.3.

Table 7.2: Performance measurements of the basic free surface simulation code without
adaptive coarsening on different architectures with up to four processors. Measure-
ments from the OpenMP version of the solver are marked as such, the other measure-
ments are taken from optimized serial versions.

CPU/Architecture MLSUPS

Opteron, 2.2 GHz (248), OpenMP 1.44
Opteron, 2.2 GHz (248) 1.82
Pentium4, 3.2 GHz (Northwood) 1.84
Athlon64, 2.4 GHz 2.04
Dual-Opteron, 2 · 2.2 GHz (248), OpenMP 2.87
Dual-Itanium2, 2 · 1.5 GHz (Madison), OpenMP 2.91
Dual-Core2, 2 · 2.4 GHz (Conroe) 4.21
4-way Opteron, 4 · 2.2 GHz (848), OpenMP 5.40

CHAPTER 7. ADAPTIVE GRIDS 67

Figure 7.15: Performance for a resolution of 1203 on a single Pentium4 CPU with
3.2GHz.

face treatment, the turbulence model, and support for different boundary conditions.
Two test cases will be used to demonstrate the achievable speed-ups:

Case A (Figure 7.14): a falling drop test case, and

Case B (Figure 7.18): a breaking dam problem.

Both cases were run in three different sizes: 1203, 2403 and 4803. Each graph shows the
total computation time with a different number of coarse grids. The simulation of the
first bar to the left is run only on the finest level, while the others use up to three levels
of adaptive coarsening.

In Figure 7.15 the performance for the relatively small resolution of 1203 on a Pen-
tium4 CPU with 3.2GHz is visible. For test case A a speed up of ca. 2.5 is achieved
once the first coarsened level is used. Due to the small size of the domain, additional
levels of coarsening do not yield a further speedup. Similarly for test case B, the first
coarsened level yields a speedup of ca. 1.6. The lower speedup in comparison to test
case A can be attributed to the fact that test case B has a smaller volume of fluid and
exhibits a larger number of thin fluid sheets. Hence, it is a harder problem for the
adaptive coarsening technique.

Figure 7.16 shows performance results for a larger domain resolution of 2403 on
a dual Opteron node. Each CPU has 2.2GHz in this case, and OpenMP was used to
parallelize the algorithm for the shared-memory architecture. As was demonstrated
above, the majority of the work is done on the finest grid – thus the parallelization is
only applied to the traversal of the finest grid level. The parallelization of the algorithm
will be discussed in more detail in Section 8. In contrast to the 1203 runs, more than a
single level of coarsening yields a further speedup for test case A with a resolution of
2403. In total, a speedup of 4.14 and 2.75 is achieved for test case A and B, respectively.

The last performance results of Figure 7.17 are for a resolution of 4803 on a four way
Opteron node (again with 2.2 GHz for each of the four CPUs). As before, the traversal
of the finest grid was parallelized with OpenMP. For a simulation without adaptive
coarsening, test case A now requires more than 54 million cells. The total speedup
with 3 coarsened grids is 3.85 in this case, and 3.16 for test case B.

68 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

In conclusion, the adaptive coarsening can be used to speed up simulations with
large bodies of fluid without significantly reducing the accuracy of the computations.
As this combination of free surface model, turbulence model, adaptive time steps,
moving obstacle boundary conditions and adaptive grids is the final state of the un-
derlying free surface solver of this thesis, the next section will discuss how to increase
the overall performance by making use of multiple computing cores.

CHAPTER 7. ADAPTIVE GRIDS 69

Figure 7.16: Performance with OpenMP parallelization for a resolution of 2403 on a
dual Opteron Node (each CPU with 2.2GHz).

Figure 7.17: Performance with OpenMP parallelization for a resolution of 4803 on a
four way Opteron Node (each CPU with 2.2GHz).

70 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 7.18: Pictures of the breaking dam test case, again with a grid resolution of 4803.

CHAPTER 8. PARALLELIZATION 71

Chapter 8

Parallelization

The following section will present an algorithm to perform free surface simulations on
machines with shared and distributed memory architectures. Performance results for
different test cases and architectures will be given. The algorithm for parallelization
yields a high performance, and can be combined with the adaptive time steps and
grids of the previous sections. On the other hand, it is not fully mass conserving, and
as such is targeted towards the creation of animations. For parallel algorithms that
guarantee mass conservation, and possibly require load balancing, other approaches,
such as [Poh07], or variants of [BT99] could be used.

8.1 OpenMP Parallelization

OpenMP is a programming model for parallel shared-memory architectures, and has
become a commonly used standard for multi-platform development. If supported by
the compiler, the developer can insert pragmas into the source code (assuming the use
of the C/C++ programming language) to indicate which regions of the program should
be executed in parallel. An overview of the whole API is given in, e.g., [CDK+01].
The advantage of this approach is that it is relatively easy to use, due to the high-
level nature of the OpenMP instructions. The same source code can also be used to
compile a single threaded application, if the compiler does not support OpenMP. On
the other hand the OpenMP standard slightly limits the flexibility when the high-level

72 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

commands, such as automatic loop parallelization, are used. These loops, e.g., have to
conform to certain rules in order to be admissible for the OpenMP instructions.

OpenMP Implementation

As was shown in Table 7.1, the main part of the computations of the solver (ca. 73%)
need to be performed for the computations of the finest grid. The parallelization thus
aims to speed up this central loop over the finest grid of the solver. A natural way
to do this would be to let the OpenMP compiler parallelize the outermost loop over
the grid, usually the z direction. However, as for the solver of this thesis the grid
compression technique [PKW+03] is used, this would violate the data dependencies
for a cell update. With grid compression, the updated DFs of a cell at position (i, j, k) in
the grid are written to the position (i−1, j−1, k−1). This only works for a linear update
of all cells in the grid. Instead, to use grid compression with OpenMP, the DFs of cell
(i, j, k) are written back to the position (i, j, k − 2), as shown in Figure 8.1. This allows
the update of all cells of an xy plane in arbitrary order. Note that this modified grid
compression only requires slightly more memory than the original version (a single
line of cells along the z direction, assuming the same x and y grid resolution).

Hence, the loop over the y component is parallelized, as shown in Figure 8.2. This
is advantageous over shortening the loops along the x direction, as cells on a line along
the x axis lie successively in memory. Long loops in this direction can thus fully exploit
spatial coherence of the data, and prefetching techniques of the CPU if available. After
each update of a plane the threads have to be synchronized before continuing with the
next plane. This can be done with the OpenMP barrier instruction. Afterwards, the cells
of the next xy plane can again be updated in any order. In the following a gravitational
force along the z axis will be assumed. This usually causes the fluid to spread in the xy
plane, which justifies a domain partitioning along the x and y axes.

Slight changes to the loop core are required to ensure the correct update of global

Figure 8.1: Comparison of the normal grid compression, and the grid compression for
OpenMP. Instead of copying an updated cell to its diagonal neighbor, the cell is copied
to a target cell in two cells distance (along the y direction for this 2D example, along
the z direction for an actual 3D implementation).

CHAPTER 8. PARALLELIZATION 73

values. The loop for example computes the total mass and volume of the fluid that is
currently being simulated, as these values are necessary for resizing of the time step.
Inflow and outflow objects can change the overall mass even though the algorithm is
mass conserving, and due to the relaxed incompressibility constraint, the volume of the
fluid is slightly changing during the course of the simulation. These values need to be
computed separately for each thread, and are added after the parallelized region was
finished. The lists of filled and emptied cells, as described in Section 4.2, also require
additional treatment. Each thread creates a separate list of cells that are concatenated
before the cell flag reinitialization is performed.

OpenMP Performance Measurements

Performance measurements of the OpenMP parallelized solver can be seen in Fig-
ure 8.3. The graphs show absolute time measurements for a fixed number of LB steps,
as MLSUPS measurements are not suitable for simulations with the adaptive coarsen-
ing of Section 7. The setup is a falling drop, as shown in Figure 7.14. The left graph was
measured on a 2.2GHz dual Opteron workstationA, with a grid resolution of 3043. The
graph to the right of Figure 8.3 was measured on a 2.2GHz quad Opteron workstationB,
using a resolution of 4803. For the dual nodes, as well as the quad nodes, the CPUs are
connected by HyperTransport links with a bandwidth of 6.4 GB/s. Each graph shows
timing measurements for different numbers of CPUs, and with or without the use of
the adaptive coarsening algorithm.

The results without the adaptive coarsening show the full effect of the paralleliza-

ACPU: 2 x AMD Opteron 248, 2.2 GHz, 1MB L2-cache; 4GB DDR333 RAM.
BCPU: 4 x AMD Opteron 848, 2.2 GHz, 1MB L2-cache; 16GB DDR333 RAM.

Figure 8.2: The OpenMP parallelization splits the y component of the loop over the
grid.

74 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

tion, as in this case almost 100% of the computational work is performed on the finest
grid. It is apparent that the speedup is directly proportional to the number of CPUs
used in this case. The four blue bars of the right graph from Figure 8.3 even show a
speedup of 4.11 for four CPUs. This can be explained with the architecture of the quad
node – the simulation setup uses most of the available memory of the machine, but
each CPU has one fourth of the memory with a fast local connection, while memory
accesses to the remaining memory have to performed using the HyperTransport in-
terconnect. Thus, with four OpenMP threads the full memory bandwidth can be used,
while a single thread, solving the same problem, frequently has to access memory from
the other CPUs.

The timing results with adaptive coarsening show less evident speedups, as in this
case only roughly 70% of the overall runtime are affected by the parallelization. As ex-
pected, the runtime for two CPUs is 65% of the runtime for a single CPU. The OpenMP
parallelization thus yields the full speedup for the finest grid. It can be seen in the right
graph of Figure 8.3 that there is a speedup factor of more than 15 between the version
without adaptive coarsening running on a single CPU and the version with adaptive
grids running on four CPUs. To further parallelize the adaptive coarsening algorithm,
a parallelization of the grid reinitialization would be required, which is complicated
due to the complex dependencies of the flag checks.

8.2 MPI Parallelization

For the development of applications for distributed memory machines, the Message
Passing Interface (MPI) is the most widely used approach. In contrast to OpenMP, MPI

Figure 8.3: Time measurements for the OpenMP version of the solver: the runs to
the left were measured on a dual Opteron workstation, while those to the right were
measured on a workstation with four Opteron CPUs. The blue bars represent runs
without the adaptive coarsening algorithm, while the orange bars use two coarse levels
in addition to the finest one.

CHAPTER 8. PARALLELIZATION 75

requires more low level work from a developer, as most of its functions only deal with
the actual sending and receiving of messages over the network. Thus, a developer
has to make sure that the problem to be solved is correctly split into work packages
for each node in the network. MPI can then be used to exchange the information that
needs to be shared among the participating nodes. Details of the introductory and
more advanced functions of MPI can be found, e.g., in [GLS99] and [GLT99].

MPI Implementation

For parallelizing the LB solver of this thesis, the domain is split along the x axis, as
shown in Figure 8.4. In this figure two nodes are used, the domain is thus halved along
the x axis, and a ghost layer is added at the interface of the two halves. Before each
actual LB step, the boundary planes are exchanged via MPI, to assure valid boundary
conditions for all nodes. As indicated in Figure 8.4, the boundary layer contains the full
information from a single plane of the neighboring node. For a normal LB solver, this
would be enough to perform a stream-collide-step. However, the free surface handling
can require changes in the neighborhoods of filled and emptied interface cells from a
previous step. All fluid cells in the layer next to the boundary layer thus have to be
validated again. If one of them has an empty cell as a neighboring node, it is converted
to an interface cell. This simple handling ensures a valid computation, but causes slight
errors in the mass conservation, as the converted cell might have received excess mass
from the former neighboring interface cell. It was found that this is unproblematic,
especially for physically based animations, as the error is small enough to be negligible.
For engineering applications, an additional transfer between the nodes could ensure
a correct exchange of the excess mass, similar to the algorithm proposed in [PTD+04,
KPR+05]. The error in mass conservation is less than 1% for 1000 LB steps.

If this scheme is used in combination with the adaptively coarsened grids, it has
to be ensured that there is no coarsening of the ghost and transfer layers. Therefore,
the transfer is only required for the finest grid level. A coarsening of the ghost layers
would require information from a wider neighborhood of the cells, and result in the

Figure 8.4: The MPI parallelization splits the x component of the loop over the grid.

76 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

exchange of several layers near the node boundary, in addition to the ghost layers
of the different grid levels. As the bandwidth of the network is a bottleneck, such
an increase of the exchanged data would result in a reduced performance. Hence,
only the fine layers are connected with a ghost layer, and are treated similar to the
free surface or obstacle boundaries to prevent coarsening in this region. As the node
boundary has to be represented on the finest grid, this means that large volumes of
fluid spanning across this boundary can not be fully coarsened. This parallelization
scheme thus modifies the actual layout of the coarse and fine grids in comparison to
the serial version of the solver.

Further care has to be taken for the adaptive resizing of the time step. This is based
on the maximum velocity in the simulation, and requires the global maximum for all
nodes to be computed. Due to the same allowed maximum velocity for all nodes, the
maximum velocity for each MPI process is computed. The MPI function MPI Allreduce
can then be used to conveniently compute the global maximum. To reduce the amount
of global communication, it is sufficient to check and compute the maximum velocity
in intervals. An interval of four LB steps will be used in the following.

MPI Performance Measurements and Discussion

To measure the performance of this MPI parallelized version of the solver, the test case
from Section 7 is used again (a drop falling into a basin of fluid). The timing measure-
ments of Figure 8.5 were measured on multiple quad Opteron nodesC. Details of these
quad nodes can be found in Section 8.1. The x axis of each graph shows the number
of nodes used for the corresponding measurement. For each node, the OpenMP par-
allelization of the previous section was used to execute four OpenMP threads on each
node. As the parallelization changes the adaptive coarsening, Figure 8.5 again shows
timing measurements for a fixed number of LB steps, instead of MLSUPS or MFLOPS
rates. The figure shows two graphs in each row: the graph to the left was measured on
a grid without adaptive coarsening, while the one to the right was measured from runs
solving the same problem with two levels of adaptive coarsening. The two rows show
the effect of the overhead due to MPI communication: the upper row shows results
for a cubic domain of 4803, denoted as test case Q in the following, while the lower
row was measured with a wider channel and a resolution of 704 · 352 · 352 (test case
W). The grid resolution remains constant for any number of CPUs involved (strong
scaling). As the domain is equally split for the number of participating MPI nodes, test
case Q results in thinner slices with a larger amount of boundary layer cells to be trans-
ferred. For 8 nodes and test case Q, this means that each node has a grid resolution of
60 ·480 ·480 with 4802 boundary cells to be exchanged. Splitting the domain of test case
W, on the other hand, results in slices of size 88 · 352 · 352 with 3522 boundary cells to
be exchanged.

Overall, the graphs without adaptive coarsening show a speedup of around 1.8
for the strong scaling. While the speedup for test case Q, from four to eight nodes,
is around 1.62, it is 1.75 for test case W, due to the better ratio between computations
and communication in the latter case. This effect can also be seen for the graphs with
adaptive coarsening (the right column of Figure 8.5). While the curve flattens out for

CThe nodes are connected by an InifiniBand interconnect with a bandwidth of 10GBit/s

CHAPTER 8. PARALLELIZATION 77

test case Q, there is a larger speedup for test case W. For test case Q with adaptive
coarsening, the speedup factor is ca. 1.3−1.35, while it is between 1.45 and 1.55 for test
case W. This lower speedup factor, in comparison to the test cases with only a single
fine grid, is caused by the increased overhead due to MPI communication, compared
to the amount of computations required for each LB step with the adaptive coarsen-
ing. Moreover, the amount of coarsening that can be performed for each slice of the
grid is reduced with the increasing number of MPI processes. Practical test cases will,
however, usually exhibit a behavior that is a mixture of the four test cases of Figure 8.5.
An example of a large scale test case that was computed with four MPI processes, and
required almost 40GB of memory, can be seen in Figure 8.7.

To evaluate the overall performance of the solver, varying rectangular grid sizes
without adaptive coarsening were used to simulate problems requiring the whole mem-
ory of all participating nodes (weak scaling). While the MLSUPS rate for a single quad
Opteron is 5.43 with a grid resolution of 704 · 352 · 352, eight quad nodes with a resolu-
tion of 1040 · 520 · 520 achieve a performance of 37.3 MLSUPS, as shown in Figure 8.6.
This represents a total speedup factor of 6.87 for the eight nodes.

It was demonstrated that the parallel algorithm presented here is suitable to per-
form efficient large scale computations. Both algorithms for OpenMP and MPI paral-
lelization can be combined to solve large problems on hybrid shared- and distributed-
memory systems. However, the algorithm does not yield the full performance when
the only goal is to reduce the computational time for small problems with MPI. For
large problems, the speedup will effectively depend on the setup – for large volumes

Figure 8.5: Time measurements for the MPI version of the solver running a problem
with 4803 (test case Q) in the upper row, and for a problem with 704 · 352 · 352 (test case
W) in the lower row of graphs.

78 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 8.6: MLSUPS measurements for runs with varying grid resolutions (weak scal-
ing) of test case W and without adaptive coarsening. The dotted line represents the
projected ideal speedup according to the performance of a single quad node.

of fluid, the speedup can be around 1.3 − 1.5, while fluids with many interfaces and
fine structures can almost yield the full speedup of a factor two for each doubling of
the CPUs or nodes used for the computation.

For dynamic flows, an interesting topic of future research will be the inclusion of
algorithms for load balancing, e.g., those described in [KPR+05]. The algorithm cur-
rently assumes an distribution of fluid in the xy plane due to a gravity along the z
direction. If this is not the case, the static and equidistant domain partitioning along
the x and y axes will not yield a high performance.

Figure 8.7: Pictures of a wave test case with a grid resolution of 880 · 880 · 336. On
average, only 6.5 million grid cells were simulated during each time step due to two
levels of adaptive coarsening.

CHAPTER 9. FLUID CONTROL 79

Chapter 9

Fluid Control

While realism is an important aspect for physically based animations, the practical
use of fluid simulations for animation is also determined by the ability to efficiently
control the behavior of the fluid. In general, animators prefer to have uncontrolled
physical simulations only where absolutely necessary. Since fluid motion is typically
very hard to predict, it is difficult to achieve a specific fluid behavior only by changing
the corresponding global parameters. For some cases, such as animations of characters
consisting of fluid, there is no real-world reference, and thus no way to really validate
such a simulation. Still, it is required that such an animation looks physically plausi-
ble. Animators are mostly interested in modifying the large-scale motion of the fluid,
without having to specify fine-scale detail such as small vortices or drops. High-level
control is thus crucial in production environments.

The method presented in this chapter makes use of control particles, similar to [FF01].
Particles are a natural choice, as they are established tools in all major 3D-applications,
can be intuitively handled, and animators are familiar with particle systems for cre-
ating various other effects. Since control particles are independent of the underlying
fluid model they can be integrated easily in different flow simulation environments.
In addition, many different control scenarios can be implemented, such as scripting,
keyframing, or coarse-to-fine simulations. It will furthermore be shown how control
particles can be automatically generated from pre-computed functions, an animated
target shape, or an existing flow simulation. Directly enforcing control from the par-
ticles onto the fluid can lead to noticeable distortions of the velocity field, which is

80 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 9.1: Comparison of direct velocity control (middle) and scale-separated velocity
control (bottom). Both simulations are controlled by the same 250 control particles
(shown in the top row) that were generated by reversing an uncontrolled simulation
of fluid flowing down the stairs.

noticeable as an increased viscosity. To avoid this artificial viscosity, the velocity field
is decomposed into coarse- and fine-scale components and the control forces are only
applied to the low-frequency part. High-frequency components are largely unaffected,
thus small-scale detail and turbulence are significantly better preserved. An example
of this effect can be seen in Figure 9.1. Techniques that make use of similar decomposi-
tions are used for example in geometry processing or motion capture editing. The de-
composition is achieved by smoothing the velocity field using a low-pass filter given by
the influence kernels of the control particles. Velocity control forces are then computed
with respect to the smoothed velocity field. Although the following description will
focus on the grid based LBM, the control mechanism is also applicable to other grid

CHAPTER 9. FLUID CONTROL 81

based solver (e.g., level set methods) or Lagrangian fluid solvers, such as smoothed
particle hydrodynamics (SPH).

In [FM97] Foster and Metaxas were the first to propose the embedding of controllers
to control pressure and velocity of the flow. This concept is further extended in [FF01]
by sampling 3D parametric space curves with oriented points to locally alter the veloc-
ity of the fluid. Space curves are also used in [LF02] to model flames. These curves
evolve according to physics-based, procedural, and manually defined wind fields.
[FOA03] already demonstrates the capabilities of particle based fluid control for ani-
mating explosions. Rasmussen et al. [REN+04] introduce viscosity, velocity divergence
and level set particles for melting, expansion and contraction of the liquid. [TMPS03]
presents an optimization technique to solve for control parameters such that simu-
lated smoke matches the given density and velocity keyframes. The efficiency is im-
proved by adopting the adjoint method for solving the nonlinear optimization problem
in [MTPS04]. As control with the adjoint method is a more general framework, it can
also be applied to, e.g., particle systems and cloth [WMT06]. The authors of [PCS04],
on the other hand, demonstrate an approach that makes use of radial basis functions
to control flow simulations. Fattal and Lischinski [FL04] proposed the idea of driving
smoke towards target smoke density states by introducing a force term and counteract
diffusion of smoke by adding a gathering term to the Euler equations. This simple
technique is significantly faster than the previously mentioned approaches. Hong and
Kim [HK04] derive potential fields from the initial distribution of smoke and a target
shape. The force field is then defined as the gradient of this potential field. Shi and
Yu control both smoke [SY05a] and liquids [SY05b] by matching the level set surface
of the fluid with static or moving target shapes. Velocity constraints at the boundary
force the fluid into the desired shape. While for smoke a compressible fluid model
can be used [SY05a], the velocity field needs to be divergence-free for liquids to guar-
antee mass preservation, as described in [SY05b]. To achieve this, the bounday forces
are modified by solving a minimization problem that yields a divergence free velocity
field.

Figure 9.2: Here an overview of the particle based control framework can be seen.

82 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

The control framework uses a set of particles that locally exert forces on the fluid.
Control particles are generated using an implicit function, a sequence of target shapes,
or another fluid simulation. They directly induce forces to attract the fluid or influence
the velocity field. It will be demonstrated that these two forces can be used for a wide
variety of effects. It will furthermore be shown how the small-scale detail can be re-
tained by applying the control forces only on the coarse flow of the fluid. An overview
of the framework can be seen in Figure 9.2.

9.1 Generating Control Particles

In the following, three different methods to generate control particles will be described.
The easiest way to create control particles is with a given pre-computed function as de-
scribed in [FM97, FF01]. To perform fluid simulations with a given target shape, the
initial triangle shape mesh is first regularly sampled. The control particles are then dis-
placed for each mesh of the animation sequence using mean value mesh coordinates,
as described in [JSW05]. Control particles can also be generated from other, possibly
coarser, fluid simulations. Within an LBM simulation, massless tracer particles can be
tracked in the fluid velocity field. Their positions are then used as control particles in
a second simulation pass. Such a control simulation can usually be very coarse, and
may even run in realtime to give instant feedback to an animator. It can likewise be
controlled to yield the desired result. Control particle sets generated by a fluid simu-
lation can be used to easily control large volumes of fluid. Furthermore, by changing
or reversing the timing of the control particles interesting effects can be achieved. Both
Figure 9.1 and Figure 9.7 make use of this approach.

9.2 Control Forces

A control particle pi is given by its position pi, velocity vi, and influence radius hi.
A constant radius h is chosen as 2.5 times the average sample distance of the control
particles.

Fluid attraction is controlled using a force that pulls fluid towards the control par-
ticles. In order to preserve as much of the natural fluid behavior as possible, this force
is scaled down when the influence region of the control particle is already sufficiently
covered with fluid. Let Ve denote the volume of a fluid element e, such as a filled grid
cell for the LBM. A scale factor is defined for the attraction force as

αi = 1 − min

(

1,
∑

e

VeW (di,e, h)

)

, (9.1)

where di,e = ‖pi − xe‖ is the distance between pi and the center xe of fluid element e,
and W is the control particle kernel function. A linear falloff function of width h/2 can
be sufficient for W :

W (d, h) =







1 : d ≤ h/2
2 − 2d

h
: d > h/2, d < h

0 : d ≥ h
(9.2)

CHAPTER 9. FLUID CONTROL 83

However, in the following a normalized spline kernel with support h [MCG03b] will
be used

W (d, h) =

{
315

64πh9 (h
2 − d2)3 : d < h,

0 : d ≥ h.
(9.3)

Summing up the attraction forces exerted by control particles pi on a fluid element e
then yields

fa(e) = wa

∑

i

αi
pi − xe

‖pi − xe‖
W (di,e, h), (9.4)

where wa is a global constant that defines the strength of the attraction force. If wa is
negative, Equation (9.4) will result in a repulsive force.

While the attraction force pushes fluid towards control particles that are not cov-
ered with fluid yet, a second force is used to modify the velocity of the fluid according
to the flow determined by the control particles. A velocity force per volume fv for the
fluid element e is defined similar to the attraction force

fv(e) = wv

∑

i

[
vi − v(e)

]
W (di,e, h), (9.5)

where v(e) is the velocity of the fluid element e, and wv a constant that defines the
influence of the velocity force. Finally, the new total force per volume f(e) acting on
teh fluid element is given by the sum of attraction, velocity and fluid forces

f(e) = fa(e) + fv(e) + ff (e) . (9.6)

Here ff(e) is the force given by the physical fluid simulation, e.g., gravity. Integrating
f(e) gives the new velocity v′(e) of a fluid element that is then used for the calculation
of the equilibrium distribution functions for the LBM. In order to apply the method to a
level set based solver it will be necessary to ensure that the velocity field is divergence
free, e.g., as in [SY05b].

Figure 9.3: This figure illustrates the process of computing the filtered fluid velocity
field for each control particle, and its interpolation back to the fluid elements.

84 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

9.3 Detail-Preserving Control

The velocity force of Equation (9.5) effectively leads to an averaging of the fluid veloc-
ities with the control velocities, which introduces undesirable artificial viscosity. This
effect is illustrated in Figure 9.1, where 250 control particles force the fluid to flow up
the stairs. The middle row of pictures is calculated with control forces as described
above. Within the influence of the control particles, the fluid is unable to develop
small-scale vortices and turbulent behavior.

Figure 9.4: Overview of the two possibilities for applying velocity control - the lower
left velocity field shows the effect of direct velocity control. The velocities of the vortex
are distorted significantly. The lower right velocity field shows the preserved vortex
with the improved velocity control method.

It needs to be ensured that the fluid velocity matches that of the control particles
without unnecessarily disturbing the natural small-scale fluid motion. To achieve this
goal the overall fluid motion is separated from fine-scale detail using a low-pass fil-

CHAPTER 9. FLUID CONTROL 85

ter on the current velocity field. Velocity forces are then computed with respect to the
smoothed fluid velocities. The smooth velocity field ṽf is obtained using an approxi-
mation of discrete convolution with the kernel W of the control particles:

ṽf (e) =

∑

i ṽiW (di,e, h)
∑

iW (di,e, h)
with ṽi =

∑

e v′
f (e)W (di,e, h)

∑

eW (di,e, h)
,

where the filtered velocity for each control particle ṽi is computed with the current
fluid velocities v′

f(e) given by the simulation. The process of evaluating these two
equation is illustrated in Figure 9.3. Note that ṽf is computed with velocities of the
control particles, while ṽi is computed with a sum of fluid element velocities. The
smoothed fluid velocity ṽf (e) then replaces v(e) in Equation (9.5).

To show that this new control force only modifies the low-frequency part, while
retaining the high-frequencies, the control force fc(e) is integrated separately, yielding
v′

c = k(vp − ṽf). Here vp is the interpolated velocity of the control particles at a fluid
element e and k is a constant depending on the user parameter wv from Equation (9.5).
By decomposing v′

f into the low-pass filtered velocity ṽf and the high-frequency part
∆vf , i.e. v′

f = ṽf + ∆vf , the new fluid velocity is given by

v′ = v′
f + v′

c

= ṽf + ∆vf + k(vp − ṽf)

= (1 − k)ṽf + kvp + ∆vf . (9.7)

Hence, the low frequency part of the fluid velocity is blended with the velocity of the
control particles, while the high-frequency part is retained, as sketched in Figure 9.4.
The bottom row of Figure 9.1 shows the effect of the scale-separated force control that
significantly better preserves fine-scale fluid motion.

To fine tune the effect of the velocity control, another parameter can be introduced
to linearly blend between direct and detail-preserving control. Using a weight slightly
larger than one, this method can even be used to artificially increase and reinforce the
fluid details. This technique can be used similar to the vorticity confinement and vortex
particle methods of [SU94, NFJ02] and [SRF05].

9.4 Results

For the implementation, the control particles are rasterized to the LB grid using early
reject tests that prevent unnecessary evaluations of the influence forces. Due to the
small changes of a single LB step it is sufficient to update the control force array in
intervals. For the simulations presented here the forces are updated every 32 LB steps.
To include the control forces into the LBM, the equilibrium DF is computed with the
modified fluid velocity. Equation (3.4) for the collision is thus changed to

fi(x, t+ ∆t) = (1 − ω)f ∗
i (x, t+ ∆t) + ωf eq

i (v + f(x), ρ). (9.8)

The effect of the detail-preserving control approach is shown in Figure 9.6. A col-
umn of fluid splashes against a wall at a T-junction. The behavior of the fluid without
control can be seen in Figure 9.5, where the fluid flows symmetrically to both sides of

86 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

the junction. Figure 9.6 shows two simulations where a coarse set of 216 control par-
ticles forces the fluid to flow only towards the left. As can be seen in the upper two
pictures, the direct velocity control introduces artificial viscosity, smoothing out the
turbulence and vortices of the flow. The pictures in the lower row show the resulting
fluid motion using the detail-preserving approach described in Section 9.3. The con-
trolled flow with detail-preservation retains small-scale fluid features and therefore
yields a more natural and interesting behavior. The simulation was performed with a
240 ·120 ·120 grid resolution, which took 38s per frame on average (without rendering)
on a standard Pentium IV 3 GHz PC. The computation of the control forces took 2−4%
of the total computation time.

In Figure 9.7 the fluid is forced to flow up several stairs and form a human figure.
For the first part of the animation, 500 control particles are used. These are generated
from a time-reversed coarse simulation of fluid flowing down the stairs. As the fluid
reaches the upper platform, these control particles are blended with 5k control parti-
cles sampled from a 3D model of the human figure. The simulation was performed
on a 3003 grid resolution and took 142s per frame, including on average 4s for com-
puting the control forces. An example of target shape matching, can be seen below in
Section 12, Figure 11.5 and Figure 11.6.

These examples demonstrate the reduced artificial viscosity of the detail-preserving
control. As the width of the influence radius of a control particle is coupled to the fil-
tering of the velocity field, the scale of detail preservation is determined by the number
of control particles. This allows large scale control with a low number of control par-
ticles, while additional sets of finer control particles can be used to modify smaller
scales. In the future, the method could be extended to include anisotropic influence
kernels, which could allow finer control with fewer control particles. The framework
could also be used to control the deformation of elastic bodies, similar to [KKA05].
Furthermore, it would be useful for practical applications to determine the influence
parameters directly, e.g., from the motion of a target shape. This could help users to
more easily achieve a desired fluid motion.

CHAPTER 9. FLUID CONTROL 87

Figure 9.5: The uncontrolled breaking dam simulation. The water splashes to both
sides at the T-junction.

Figure 9.6: Comparison of direct velocity control (left column) and detail-preserving
control (right column) for the T-junction breaking dam.

88 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 9.7: A fluid simulation is controlled to flow up the stairs and form a human
figure.

Figure 9.8: An image from the sequence of Figure 9.7 with a reflective surface visual-
ization.

CHAPTER 10. MODELLING LARGE SCALE FLUIDS 89

Chapter 10

Modelling Large Scale Fluids

The following section will focus on scenes that have a much larger physical scale than
the scenes considered before, e.g. a ship traveling through the ocean. The challenge is
to capture both the large scale movement of the water around the ship, as well as the
splashing of the waves around it, including drops and spray. As all these phenomena
contribute to the visual appearance, they have to be captured to achieve a realistic
representation of such a scene in a computer generated animation.

For all classes of algorithms that are used to simulate free surface flows, the prob-
lem is that the amount of computational work and the required resources grow sig-
nificantly when the resolution of the simulation is increased. The full simulation of
the scales mentioned above with a VOF Navier-Stokes solver would hardly be possi-
ble even on large supercomputers. Adaptive techniques can be used to alleviate this
problem to some extent, as shown in Section 7 or in [LGF04], but usually increase the
complexity of a solver and have limits in their ability to speed up the computational
time. In the following, a different approach will be presented that computes the full
fluid flow only in a bounded region of interest, and uses a fast two-dimensional fluid
simulation to compute the fluid surface around it. Only an upper layer of fluid is sim-
ulated, instead of the whole depth of the fluid from the free surface to the bottom (e.g.
the ocean floor). The small scale details such as drops are simulated as particles with a
simplified, yet physically based, algorithm.

In its different forms the Navier-Stokes (NS) equations have long been used for phys-
ically based animation. [KM90] were the first to use shallow water simulations in com-

90 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

puter graphics. As of today, this simplified model, which assumes depth averaged
fluid properties, is still a research topic in computer graphics e.g. for computations
performed on the GPU [HHL+05]. In other application fields, such as coastal engineer-
ing, it has become an important tool. For modelling large scale water surfaces deep-
water wave models are often used to compute the water surface motion, e.g. in [Tes04]
or [HNC02]. These, however, do not solve the NS equations directly, but model the
wave propagation by different forms of trochoid function spectra. In [RNGF03], Ras-
mussen et al. combined a 2D flow field with periodic 3D simulations to create detailed
smoke simulations. Large scale open water scenes with 2D and 3D simulations were
also used in TV and feature film productions, however, without giving detailed infor-
mation about the models used. Recently, an approach to optimize a fluid simulations
with tall and thin cells was proposed by [IGLF06], thus also reducing the computa-
tional complexity for large fluid volumes. As the shallow water equations represent
an advection-diffusion problem similar to the full NS equations, they can likewise be
solved with the LBM. A derivation of the appropriate changes to the basic algorithm
can be found in [Del01].

A different approach for detailed and accurate fluid simulation solvers that will
be used in the following sections, can be found in the area of chemical engineering.
For cases such as bubble column reactors, Eulerian-Lagrangian simulations of these
dispersed multi-phase flows, e.g. large numbers of bubbles in a relatively coarse fluid
flow simulation [DKvS99], are used to understand and optimize the physical processes
[BGD05]. These methods simulate bubbles with a spherical shape, and model the
forces caused by the turbulent fluid around them. Apart from level set methods, where
particles are used to accurately track the free surface, [TFK+03a] also use particles to
add small scale details. But in contrast to the approach presented in the following, they
generate drops based of the surface curvature, and apply linear damping to model air
resistance. More recently, Kim et. al presented techniques to model and render turbu-
lent water with particle based level set solver [KCC+06]. This work, however, is also
focused on scenes with a smaller scale.

10.1 Shallow Water Simulation

Within a certain region of interest, e.g. around a moving ship, a full three-dimensional
simulation of the free surface fluid is performed. In this region the algorithm as de-
scribed so far can be applied. The outer water surface is computed by solving the
shallow water equations. Also known as St. Venant equations, they are usually used
to simulate waves whose wavelength is similar to the overall water height. In this case
the wave propagation speed is constant for all amplitudes. Deep water waves on the
other hand are dispersive, which means that the wave propagation speed depends on
their amplitude. By using a shallow water model the assumption is made that for the
limited range of amplitudes generated by the three-dimensional simulation the wave
propagation speed is the same. The advantage of a shallow water simulation is a full
flow field for the water surface that can produce vortices or handle e.g. flowing rivers.

Shallow water simulations (SWS) can likewise be performed using the LBM. In this
case, instead of considering the fluid pressure, a height value is computed for each cell.

CHAPTER 10. MODELLING LARGE SCALE FLUIDS 91

Overall, the algorithm is very similar to the basic algorithm described above – both the
streaming step and Equation (3.4) for relaxation towards the equilibrium are still valid.
The equilibrium DFs to be used with Equation (3.4), however, are calculated differently.
Furthermore, as the fluid surface is only two-dimensional, the D2Q9 LB model with
nine velocities is used. To distinguish the DFs of the shallow water simulation from
those of the three-dimensional free surface simulation, they are denoted as gl in the
following. The fluid height h and the fluid velocity for the shallow water simulation
are calculated as

h =
9∑

l=1

gl v =
1

h

9∑

l=1

elgl . (10.1)

In contrast to the 3D LB model, the velocity computation of the SWS requires a division
by the height, as shown in Equation (10.1). With height and velocity, the equilibrium
DFs are computed as

geq
0 (h,v) = h

[

1 − 5

6
Gh− 2

3
v2

]

, (10.2)

and

geq
l (h,v) = wlh

[
1

6
gh+

1

3
el · v +

1

2
(el · v)2 − 1

6
v2

]

, (10.3)

for l = 1..9. Here G is the gravity force, normal to the two-dimensional plane of the
SWS, and the weights wl have the values wl = 1/18 for l = 2, ..., 5, and wl = 1/36 for
l = 6, ..., 9. An in depth description of the shallow water LBM can be found in e.g.

Figure 10.1: This picture gives an overview of the hybrid simulation method. The full
three-dimensional fluid flow is solved in a given region of interest (illustrated by a 2D
rectangle), and coupled to a two-dimensional shallow water simulation (shown as a
1D line in the picture).

92 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

[Zho04]. To establish a fixed height of the SWS boundary, the cells there are set to have
the equilibrium DFs for the initial height and a zero velocity.

As this shallow water solver is similar to a basic LB solver, the Smagorinsky turbu-
lence model from Section 3 can likewise be used to increase stability. The only differ-
ence is that Πα,β is now computed as a sum over the nine DFs of a SWS cell. To ensure
stability for varying velocities, the adaptive time stepping as described in Section 6 is
applied to the SWS simulation as well.

10.2 Hybrid 2D/3D Simulation

An overview of the hybrid simulation approach is given in Figure 10.1. Both algo-
rithms have been parametrized to solve the same fluid simulation problem, and are
then coupled at an interface region. In the following it will be assumeed that the SWS
is performed in the xy plane, and the gravitational force acts in the direction of the
negative z axis. There is an inherent difference between the two simulation approaches
that has to be overcome: the derivation of the SWS assumes a depth averaged velocity
and has a coupling between fluid height and velocity. The 3D simulation, on the other
hand, can have a velocity varying along the z axis, and has boundary conditions (see
below) that makes it independent of the initial height of the fluid surface hini. In or-
der to be able to couple both simulations, the parametrization procedure explained in
the following for the SWS was developed. It ensures that the SWS has the same wave
propagation speed as the average waves generated in the 3D simulation.

The SWS is offset by a constant height hoff , as shown in Figure 10.1. Here Sz is the
height of the 3D domain in cells. In combination with the gravity the height offset
hoff determines the wave propagation speed, and is set according to the average wave
height generated by the 3D simulation havg. Assuming a common trochoid wave shape,
hoff is set to be half of the expected wave length, thus hoff = πhavg. For the examples
shown in the following a value of havg = 1/2hini was used. Now the gravity force of
the SWS has to be scaled according to the height offset. This is done by examining the
behavior of the SWS properties. Given an arbitrary simulation setup, the properties
of the fluid change by a factor given in Table 10.1, when the value of the parameter
in the first column is multiplied by 2. Thus, given the initial SWS fluid height and

Figure 10.2: Wave propagation of a hemispherical drop on a flat surface using the SWS
coupling algorithm. The 3D simulation region is highlighted in the middle.

CHAPTER 10. MODELLING LARGE SCALE FLUIDS 93

n = log2(hoff +hini) the SWS gravity G is set to match the given offset for the simulation
resolution. It is computed from the z component of the 3D gravity gz as

G = gz ·
(e

2

)−n

. (10.4)

The 3D gravity is given by the physical value, usually G′ = 9.81 [m/s2], as g = (0, 0, G′ ·
∆t2/∆x). The initial time step size ∆t is set according to the maximum fluid or moving
obstacle speed in the simulation setup. Now, when transferring velocities in the xy
plane between the simulations, the influence of the offset and gravity scale have to be
removed. According to Table 10.1 this is accomplished by

vx,y = su ux,y , with su =

√
2

n

√
sg

1/n
. (10.5)

3D to 2D Coupling

Here, the height of the fluid at a position within the 3D simulation region is determined
by searching for the first interface cell. This seach is started at the cell with grid position
(i, j, 0), and assumes a planar fluid surface. Hence, the fluid height is computed for the
first interface cell at (i, j, kH) with

H(i, j) = kH + ǫ(i, j, kH) + hoff . (10.6)

The velocity at the water surface usurf is given by the interface cell of the 3D simulation.
To transfer the information from the 3D simulation to the SWS a cell at (i, j), shown as
a circle marked with X in Figure 10.4, is initialized with the equilibrium DFs

gl = geq
l

(

H(i, j), su usurf

)

. (10.7)

The cells where height and velocity are set with Equation (10.7) represent the inner
boundary for the SWS. Further inwards the full 3D simulation is performed, thus the
cells of the SWS do not have to be updated in this region, as their values are never
used. To ensure a transfer with as few disturbances as possible, a double layered trans-
fer is used. Thus, a second type of boundary condition for the region of SWS cells

Figure 10.3: The two cases that need to be distinguished to generate a closed surface
mesh for the 3D and shallow water simulations.

94 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Table 10.1: Behavior of the SWS on parameter change. Here N is the number of SWS
cells along the x or y axis.

G N ∆t v

G 2 1
√

2
√

2

N 1 2 e
√

2

directly outwards of the boundary cells described above (the circle marked with O in
Figure 10.4) is applied. For the cells that are updated according to Equation (10.7) all
DFs are reset each time step, while for the second boundary layer the existing DFs are
only rescaled to match the required fluid height

g∗l = gl ·
H(i, j)

h(i, j)
. (10.8)

The combination of these two boundary conditions ensures a correct transfer of both
fluid surface height and velocity.

Figure 10.4: Detail of the double layer boundary conditions in the overlapping inter-
face region.

CHAPTER 10. MODELLING LARGE SCALE FLUIDS 95

2D to 3D Coupling

The transfer from the SWS to the 3D simulation, is done by initializing the 3D cells
to represent the SWS height and velocity. For a 3D cell at (i, j) marked with O in the
upper part of Figure 10.4 cells are thus removed ifH(i, j) > h(i, j), otherwise new ones
are added. To correctly initialize the new cells the velocity of the SWS is directly used.
The z coordinate of the velocity is calculated from the SWS fluid heights of the current
and previous timestep.

For the outer layer of the 3D simulation (square cells marked with X in Figure 10.4)
velocity boundary conditions with a fixed pressure are used. For the LBM the pressure
of a cell with height k in the domain is given by

ρk = 1.0 + (hini − k) · gz · −3ω . (10.9)

The pressure thus increases further down in the grid, with a gradient that depends
on the relaxation time ω. The velocity can again be taken directly from the SWS, as
described above. Note that it is in this case not necessary to scale the SWS velocities,
as the whole height of the 3D simulation is set. These boundary conditions, however,
do not ensure the full propagation of arbitrary waves generated in the SWS region, as
this would require an additional wave profile initialization. Although these boundary
conditions do not enforce mass conservation for the transfer, this is not problematic as
the overall height of the fluid is kept at the initial value by the SWS and the pressure
initialization of the 3D simulation.

The depth of the overlapping region for the two simulations is variable, but a dis-
tance of one eighth of the 3D domain size was found to yield good results. A validation
run is shown in Figure 10.2. The circular wave retains its shape while it is transferred
from the highlighted 3D region to the SWS region. The in- and outflow at the 3D do-
main boundary furthermore causes no disturbances of the flow field. A pure SWS
simulation would not have been able to resolve the drop forming in the middle of the
3D region, visible in the right picture of Figure 10.2.

Surface Generation

As described before, the triangulation of the 3D simulation surface is performed with
the marching cubes algorithm [LC87]. A triangulation of the SWS surface is easily

Figure 10.5: Effect of the drag model for different size scales. The simulations were
parametrized to represent scales of 10cm, 1m and 10m, from left to right. The smaller
particles, are slowed down, and cause mist below the outflow.

96 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 10.6: A stream of water hits a rock and a water surface In the rightmost picture
the interface between 2D and 3D region is highlighted.

computed by constructing patches between four adjacent SWS cells that have x and y
coordinates according to their grid position, and a z coordinate given by h(x, y). At
the 3D domain boundary the first row of SWS cells is left out, and new triangles are
constructed to connect the 3D mesh to the SWS patches. If both points of a marching
cubes cell lie on its z edges, this is sufficient to ensure a closed mesh. For all other
cases, triangles also have to be connected to the points above or below the cell at the
surface, as shown in Figure 10.3. In rare cases, e.g. when a drop directly hits the
connection line, this technique will not result in a closed mesh. In the interface region,
where full information is available from both simulations, the fluid surface heights
are linearly blended, to achieve a smooth transition from one type of simulation to
the other. As the mesh generated from the fluid fractions already requires smoothing,
a smoothing of the interface region is also performed to prevent any artifacts from
misaligned normals.

10.3 Lagrangian Drop Model

For the animation of drops methods developed for dispersed gas-liquid flows are ap-
plied. Each drop is described by its position x, velocity w and radius r. It is assumed
that the drops are small enough to remain spherical due to surface tension. Thus using
the density of water ρW the mass of a drop is given by its volume

mP = ρW
4

3
πr3 . (10.10)

CHAPTER 10. MODELLING LARGE SCALE FLUIDS 97

Generation

To generate particles in the simulation the turbulence model explained in Section 10.1
is used. As it already determines the amount of unresolved flow features in a given
cell, it is also used to compute a particle generation probability for cells at the fluid
interface. This probability is calculated with the absolute value of the Reynolds stress
tensor given by Equation (3.6) and the physical speed u′ = u ∆x/∆t. The magnitude
of the stress tensor usually takes values of ca. Pm = 10−2 for regions with significant
unresolved detail independent of the actual grid resolution. It is assumed that the
range of velocities, where the pressure of the surrounding air causes instabilities that
lead to drops at the surface, is similar to that of the drop terminal velocities, which
motivates the following probability function

pD = Pab ∗ (u′)2 with Pab = |Πα,β| . (10.11)

Thus for a high physical speed of 10[m/s] and significant unresolved flow details this
function will result in a drop generation probability close to one. Note that the calcu-
lation of the Reynolds stress tensor is especially easy for the LBM, as it is computed
locally from the derivative information contained in the non-equilibrium parts of the
DFs (see Equation (3.6)). For other types of solvers, this computation will require access
to neighboring grid cells to compute the derivatives. On creation the drop velocity is
initialized with the fluid velocity and a randomized normal offset to avoid immediate
collision with the fluid surface.

Animation

For each LB step, the particle positions are updated using their velocities and the LB
time step length

x(t+ ∆t) = x(t) + ∆tw . (10.12)

To update the particle velocities, the balance of the forces acting on it is computed

mP
dw

dt
= FG + FD . (10.13)

where FG is the force due to gravity and FD is the drag force caused by the drop of wa-
ter moving through the air. In contrast to the dispersed flow simulations mentioned
above, any lift the drops might experience is thus ignored, as well as other forces that
would e.g. be caused by the density gradient in the air. The lift is proportional to the
ratio between the involved fluids, which is close to zero for air and water. Likewise,
a density gradient very close to zero is assumed for the air phase. FG is directly com-
puted from gravity and particle mass as FG = mP g, while the computation of the drag
force requires more effort. The movement of water drops through the air has been
studied in depth for meteorological purposes, see e.g. [PK97]. From these studies it
is known that rain drops usually have a size less than 4.5mm. Above this size they
will start to deform during their movement and eventually break apart due to the high
forces from the air in comparison to the surface tension. It was furthermore measured
that these large drops have a terminal velocity of up to wt1 = 9m/s, while smaller
drops of with e.g. r = 0.5mm only accelerate to ca. wt2 = 2m/s. Given a coefficient of

98 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 10.7: Animation of a spherical object hitting the water surface.

drag CD, the drag force acting on a particle is calculated as

FD =
CD

2
ρL π r2 wrel|wrel| , (10.14)

where wrel is the relative velocity of the particle. It is computed from the velocity of the
air wA by wrel = wA − w. As the gas phase is not explicitly simulated, wA is usually
set to zero. Other values could be used to e.g. simulate the effect of wind. For the drag
coefficient there are various approximations for different regimes of turbulence. As the
case of a larger spherical rain drop at terminal velocity is already turbulent (Re > 1000),
and the approximations are computationally very expensive, the computation of the
drag coefficient is constructed to yield values in the required range. It is required that
the drag force and gravity acceleration balance for the drops at their respective terminal
velocities. Assuming a linear change for both parameters, the drag force is computed
with a bilinear interpolation

CD =
|wrel|

wt2 + (wt1 − wt2)wr

(
1

2
+

1

2
wr) . (10.15)

with wr = (r1− r)/(r1− r2). For the simulations the size of the drops was limited to the
range of r1 = 0.005m to r2 = 0.0005m. After the computation of FG and FD the velocity
is updated according to Equation (10.13) with an Euler-step

w(t+ ∆t) = w(t) + (FG + FD)mP ∆t . (10.16)

Additional effects

To actually cause a disintegration of a thin fluid sheet into drops, a size rD in the given
range is randomly chosen, and the mass of the drop subtracted from the interface cell

CHAPTER 10. MODELLING LARGE SCALE FLUIDS 99

where it was generated. For simulations representing a large scale, this could result in
huge numbers of particles – for these cases a multiple of the drop’s mass is subtracted
from the cell. It is then displayed as a correspondingly larger transparent particle,
thus representing multiple drops of similar size. Once the drop hits a fluid surface,
the mass that was subtracted before is added again. Here, similar to [TFK+03a], the
particles are traced on the fluid surface to give the impression of foam. Figure 10.5
shows examples of the drag force influence for different scales. For the larger test cases
the higher velocities result in higher drag forces, resulting in a noticeable slowdown of
the smaller drops.

Another effect that cannot be directly simulated with the algorithm explained in
Section 10.1, is that of instabilities caused purely by the relative physical velocity of
the fluid u′

rel, as the air is not simulated as a fluid itself. Thus, in order to cause these
instabilities, a simple approximation is used to manually add the following term

fi = fi + (Pm − Pab) · wi
u′

rel

50
· ei , (10.17)

for cells, with Pab < Pm that do not generate particles.

10.4 Results and Discussion

All results shown in the following were created using a physical viscosity of water
νW = 1 · 10−6. To enhance the realism, a texture is added to the water surface, giving
the impression of smaller chaotic waves. A test case of the hybrid simulation method
is shown in Figure 10.6, where a stream of water hits a rock and a water surface. The
waves that are generated spread outwards without a visible border between the SWS
and the 3D simulation. Simulation resolutions and times can be found in Table 10.2. A
test case that demonstrates the capabilities of the drop model is shown in Figure 10.7.
A spherical object is dropped into a fluid surface. The drop model, with up to 50000
drops at a single time step, enhances the impression of a large simulation scale.

Given a working hybrid simulator, only small changes are necessary to achieve
animations such as shown in Figure 10.8. Here the 3D domain is moved according to
the position of an object in the xy plane. For each movement of the domain by ∆x the
values stored in the grid are copied by one in the desired direction. During the next
step, the boundary regions of both simulations will again be correctly initialized for the
boundary conditions. In this example the foam particles on the water surface clearly
visualize the flow field in the shallow water region.

For a simulation run with a relatively large SWS domain, such as shown in Fig-
ure 10.8, the workload distribution between the different parts of the algorithm was
measured. In this case, ca. 68.8% are spent on the simulation of the 3D region. The
2D region, covering a 35 times larger area, requires 24.9% of the time, while ca. 2.6%
are spent on the coupling of both simulations. The remaining 3.7% were spent on drop
calculation, surface mesh generation and initialization. The update of a single SWS cell
is on average three times faster than the update of a single 3D cell.

In the future, it might be useful to apply the methods from SPH to the generated
drop particles for an intermediate scale. This could be used to e.g. accurately capture

100 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Table 10.2: This table shows grid resolutions together with average simulation times
per frame (measured with an 2.2 GHz Opteron CPU). The size value is the physical
length of a side of the 3D domain used for parametrization of the simulations.

3D SWS Simulation Size

Figure 10.6 1203 4802 14.6 s 0.2 m

Figure 10.7 120 × 120 × 200 4802 34 s 10 m

Figure 10.8 1203 9602 79.6 s 2 m

Figure 10.8: Pictures from an animation with a moving 3D domain.

effects such as coalescence. It would furthermore be interesting to add a model for
the generation of drops in the SWS region as well, or couple it with an FFT solver
for ocean waves [Lov03, Tes04]. An easy way to further speed up the computations
would be to reduce the SWS resolution by an integer factor, and interpolate the values
at its boundary. The problem of a fixed wave propagation speed, on the other hand,
could be alleviated by overlaying multiple shallow water simulations with different
parametrizations. Finally, the method could be used to couple multiple regions of
three-dimensional computation in one large water surface simulation. Given enough
computational resources in combination with low grid resolutions, this could be used
to simulate interactive environments with large water surfaces e.g. for virtual reality
applications.

CHAPTER 11. A PROGRAMMING INTERFACE FOR FLUID SOLVERS 101

Chapter 11

A Programming Interface for Fluid
Solvers

11.1 Blender Integration

This chapter will expain how to construct an application programming interface (API)
between 3D applications, such as CAD or animation programs, and fluid simulators,
such as the one that was implemented for this thesis. An exemplary integration of
the fluid simulator with its API is available as part of the open source 3D application
Blender, an overview can be found in [Thu06]. It was published under an open source

Figure 11.1: An example of three different setting panels from the Blender GUI.

102 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

license, and is available from www.blender.org together with a manual and several
tutorials.

Overall, the programming interface can be held very small – the application needs
to pass parameters and geometry data to the solver, which generates a sequence of
triangulated fluid surfaces together with additional information from the simulation.
Several screenshots from the Blender GUI with options for different types of objects
participating in a fluid simulation can be seen in Figure 11.1. A specific object type
is designated to contain global information, among others, fluid viscosity and grid
resolution, and set the boundaries of the fluid simulation domain in the coordinate
system of the 3D application. Another object type defines obstacles in the simulation,
which have various settings to control the obstacle surface. The volume of the mesh
or its shell will then be initialized as obstacle cells for the simulation. Similarly, object
volumes can be defined to contain fluid at the beginning of a simulation. For these,
parameters such as the initial velocity are available. An example of a typical setup can
be seen in Figure 11.4. As the GUI is usually specific to the 3D application, the main
task here is to present all relevant options of the fluid solver in a clear and intuitive
way. For example, the most commonly used options, such as grid resolution should be
available without too many actions from the user.

Upon starting the simulation, the necessary data is transferred to the fluid solver.
While this is straightforward for constant integer or floating point parameters, the ge-
ometry and time-varying parameters have to be converted into the format required by
the solver API. Triangle meshes, for example, are specified by their vertices, and a set
of triangle indices. Other information that is usually available in 3D applications, such
as surface normals and properties can be ignored for the solver export.

As the simulation run can take large amounts of time, it is important to keep the
user interface responsive. Hence, the simulation is started in a separate thread, while
the GUI can still process user input. For the integration into Blender, the GUI is used to
check for a signal from the user to stop the simulation, and display the current status of
the simulation run. The simulation itself creates two compressed output mesh files for
each animation frame – one in full resolution, and a smaller one with reduced resolu-
tion. The latter one can then be previewed quickly in the GUI, while the full resolution
mesh may take several seconds to load from hard disc. A side by side comparison of
the preview mesh, the full resolution mesh and a raytraced image of the full resolution

Figure 11.2: The image to the left shows a typical preview mesh in Blender. In the cen-
ter the final mesh in the GUI can be seen, while in the right picture the final raytraced
image is shown.

CHAPTER 11. A PROGRAMMING INTERFACE FOR FLUID SOLVERS 103

mesh is shown in Figure 11.2.

11.2 Integration Extensions

A smooth appearance of the fluid surface meshes is important for a plausible appear-
ance. As subdivision of the triangulated mesh by itself does not give significantly
better results, a simpler approach is to use smoothed vertex normals. These can be
generated from the fill fraction field of the simulation. The difficulty of passing these
normals to the raytracer strongly depends on its architecture. Blender usually uses
normals that are generated from the actual triangle data. It is thus important to en-
sure that the smoothed normals from the simulation are not overwritten, unless other
functions in Blender are applied to change the fluid surface geometry.

As motion blur is an important perceptual clue that is very hard to compute ac-
curately and efficiently within a raytracer, many 3D applications apply image based
motion blur techniques. These compute the velocities of each pixel similar to a usual
raytracing pass, which computes the pixel color. The pixel velocities are given by the
motion of the triangle that is hit by the corresponding ray. Each vertex of the triangle
has a velocity that is interpolated for the intersection point on its surface. As the fluid
surface can completely change from one frame to the next, the motions of the trian-
gles and vertices cannot be calculated from the triangle meshes. However, the velocity
information is available during the simulation. A per vertex velocity is thus exported
together with each triangle mesh. During the motion blur pass, these are used and in-
terpolated for each triangle of the fluid surface mesh. A comparison of an image from a
fluid simulation with and without motion blur can be seen in Figure 11.3. While for the
image on the left the fluid motion is not clearly visible from the still image, it is appar-
ent from the right image of Figure 11.3. The latter one, however, has less visual detail
in the blurred regions – the motion blur is thus especially suitable for animations.

Most images of simulations in previous chapters were set up using Blender – an-
other example of a complex animated character interacting with controlled fluids can
be seen in Figure 11.5 and Figure 11.6.

Figure 11.3: The left image shows a fluid simulation scene without motion blur, while
the image to the right has an image based motion blur with per vertex velocities ap-
plied.

104 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 11.4: Several frames of animation from a simulation setup in Blender – a glass
shaped obstacle is filled with fluid.

CHAPTER 11. A PROGRAMMING INTERFACE FOR FLUID SOLVERS 105

Figure 11.5: An example of an animated character in combination with a controlled
fluid. Both were set up using Blender.

106 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Figure 11.6: Another character and fluid control example animated and rendered with
Blender.

CHAPTER 12. CONCLUSIONS 107

Chapter 12

Conclusions

The goal of this thesis was to develop a free surface simulator with high efficiency,
stability and flexibility. The following section will summarize the contributions of this
thesis that were presented in order to achieve this goal. Afterwards, drawbacks and
future extensions of the algorithm will be discussed.

12.1 Summary

The efficiency of the algorithm, as presented in this thesis, is given due to the use of
the LB solver for the NS equations. The basic algorithm performs very well on modern
computer architectures, and is suitable for shared- and distributed-memory machines.
The VOF free surface model can be directly integrated into the LBM, and likewise
yields a high efficiency. It preserves mass, and allows a local treatment of the free
surface boundary conditions. Additionally, the efficient treatment of arbitrary moving
and deforming triangle meshes as obstacle objects is important for the practical use of
the algorithm.

The stability is mainly guaranteed by the adaptive time stepping method, and the
turbulence model. The time step size is automatically chosen according to the largest
velocities occurring in the simulation. It thus guarantees valid velocities even for
highly dynamic scenes. The combination of the adaptive time steps with the Smagorin-
sky LES model allows the simulation to be performed with very small time step sizes

108 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

that ensure a stable simulation even for flows with very high velocities. Furthermore,
the LES model guarantees the stability of the solver for low viscosities.

The central part of this thesis, the adaptive grid coarsening algorithm, contributes
to both efficiency and flexibility of the simulator. It speeds up the computation times
for large grid resolutions, and enables the practical use of high resolutions for anima-
tions. It is based on an established grid refinement scheme for the LBM, and extends
this scheme with a set of cell based rules to ensure an adaptive coarsening of larger
fluid volumes. At the same time valid boundary layers are guaranteed. The overhead
caused by these cell checks causes no noticeable slowdown for smaller simulation res-
olutions, while allowing speed up factors of more than three for larger resolutions.

Moreover, the flexibility of the LB solver is increased by the detail-preserving con-
trol framework, the Lagrangian drop model, and the shallow water coupling. The
control framework allows the creation of animations according to the wishes of the
user – this is crucial for almost all types of animation production. The framework pre-
serves the natural fluid motion, which is of particular importance for an interesting
and realistic appearance. The coupling of a 3D free surface simulation with a shal-
low water simulation allows the animation of large open water surfaces that could not
be simulated even with the adaptive coarsening technique due to memory and time
requirements. In addition, the Lagrangian drop model can be used to enhance the re-
alistic appearance of a scene by giving the impression of small scale drops and foam.
Finally, the integration of the solver into a 3D application made the setup and visual-
ization of complex fluid scenes possible.

12.2 Discussion and Future Work

One of the main strength of the algorithm developed in this thesis is the computa-
tional efficiency of its components. The computations usually involve only the local
neighborhood of a cell. Therefore, global properties – such as the mass conservation
or incompressibility – are guaranteed by the local treatment of the algorithm. Several
aspects of the simulation can, however, still be improved and extended. The follow-
ing sections will discuss areas of future work for animation applications, as well as
two engineering applications: the production of metal foams and particle technology
applications.

Animation of Free Surface Fluids

For the animations that where simulated for this thesis the memory requirements
where often a limiting factor, even though the grid compression technique of [Wil03,
Igl05] was applied. The algorithm in its current implementation requires 22 floating
point values to be stored per cell, which means that a full allocation of a 2563 grid
already requires almost 1.5GB of memory. This could be alleviated by dynamically al-
locating memory only for the regions of the grid that are filled with fluid. In order to
retain a high performance, this could be implemented by handling grid patches of a
fixed size, organized, e.g., in a space tree structure.

CHAPTER 12. CONCLUSIONS 109

Another problem is caused by the underlying VOF free surface tracking, as its lim-
ited range of fill fraction values (zero to one near the interface) does not allow an ac-
curate computation of the interface curvature. For an approximation of the curvature,
this may be sufficient, but for simulations with strong surface tension, an inaccurate
curvature calculation can lead to visible artifacts. The accuracy can be increased by
allowing larger computational stencils, but it would be useful to develop methods that
are able to efficiently and locally compute the curvature, e.g., along the approach pro-
posed in [PP04].

Several aspects of the algorithm are interesting topics of future research. One pos-
sible extension is the close coupling between a LB, and a SPH solver, extending the
Lagrangian drop model of Section 10. This could enable large scale fluid simulations
that correctly handle all necessary scales – from large fluid volumes, to interacting
splashes, to foam and spray. Due to the VOF method, which computes actual mass
values for each cell, the mass conservation can easily be guaranteed for such a hybrid
simulation.

For the coupling with shallow water simulations, dispersive wave models, such as
the Green-Naghdi equations [DS05] could further enhance the results. As these equa-
tions are non-linear, they are significantly harder to solve, but could be used to handle
different wave propagation speeds in the shallow water region. Another approach
would be to use the convolution based algorithms, as proposed in, e.g., [Lov03], and
by J. Tessendorf in [Kir04]. However, these would require more changes to the bound-
ary conditions of the coupled simulations, as the methods mentioned previously do
not yield velocity values for the fluid surface.

Moreover, it should be possible to couple multiple LB simulations, as demonstrated
in, e.g., [MSRG05, LIG06, LSSF06] for SPH and level set based solvers. This would
yield interesting visual effects, and increase the suitability of the solver for practical
fluid animations. Smoke and fire simulations themselves are possible with the LBM,
as demonstrated, e.g., by [WLMK04]. An additional density value is advected in the
fluid velocity field given by the simulation of the gas phase. This gas phase could then
be coupled to the free surface simulation, using the free surface as a moving boundary
condition, possibly within the same LB grid as the free surface simulation.

Another area with room for improvements is the overall usability and intuitive con-
trol of fluid simulations. While the control framework presented here is an important
step in this direction, it lacks the possibility to intuitively modify the simulation. This
could be achieved by combining the particle based control with techniques from sketch
based interfaces [IMT99, KH06], e.g., to allow a user to paint vortices or waves directly
into a fluid animation. Such an approach could also be combined with an intelligent
restart and break-point algorithm. This would allow the reuse of previously computed
unmodified parts of the simulation. In some cases, it might even be interesting to al-
low direct modifications of the isolevel values of the animation for manual small scale
changes [LH06].

Simulation of Metal Foams

Although the basic free surface algorithm of this thesis was originally developed to
simulate metal foams, as described in Section 1, a full simulation of the production

110 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

process of metal foams requires the treatment of additional effects [Thi05]. Naturally,
the gas of the foaming agent plays an important role. Thus, the fluid simulation has
to be combined with an advection diffusion solver to simulate the gas phase, and its
effects on the bubble formation [KTH+05]. A realistic simulation should furthermore
include temperature effects, possibly treating the whole process from melting of the
metal pellets to their cooling and solidification. In addition, the foaming processes
requires an accurate and efficient surface tension computation, as surface tension plays
an important role in the formation and stabilization of the foam structure.

While the algorithms from Sections 5,9 and 10 are not important for foaming sim-
ulations, the adaptive time stepping of Section 6 is interesting to efficiently handle the
different time scales that occur during the foam formation. Bubble coalescence, for
example, results in momentarily high velocities and surface tension forces in compari-
son to the overall relatively slow foaming process. The combination of the turbulence
model with the free surface algorithm of Section 4 is likewise useful to stabilize a foam-
ing simulation, as the viscosity of, e.g., liquid aluminum is similar to that of water. The
adaptive grids of Section 7 might only be useful in the early phases of the foaming
process, where the fluid forms a large volume before the individual bubble kernels are
formed. Finally, the API described in Section 11 could be used to directly couple the
fluid solver to a CAD program, which would allow the accurate setup of the casting
form and its initial conditions. Overall, the algorithm is very suitable for metal foam
simulations, as the free surface can be represented within a single layer of the com-
putational grid and can handle large density ratios between the two phases. Other
techniques that work with a smooth interface layer would require significantly higher
grid resolutions to resolve the thin foam structures.

Particle Technology Applications

Another interesting area of application for the free surface algorithm of this thesis are
combined fluid and particle simulations, e.g., for the field of nano-technology engi-
neering. In this case, simulations can be used to increase the understanding of particle
dispersions, the agglomeration processes, particle interactions and the particle proper-
ties [BFS+06, Fei06]. A typical example of a problem from this field is the simulation
of charged colloids in a fluid, e.g., for glues and paints [HF01, Fei05]. To study the
behavior of such a colloidal dispersion, it would be interesting to simulate the whole
process of particle agglomeration on a surface together with the evaporation of the sol-
vent liquid. Other particle processes that are interesting applications for simulation are
sedimentation processes, e.g., the sedimentation of sand in a river bed [Igl05].

For these applications, adaptive grids and parallelization (Section 7,8) quickly be-
come important once larger particle numbers should be simulated. While smaller
numbers, up to around 10, can be handled by a typical workstation, particle numbers
of 1000 and more would be interesting for realistic applications. As each particle has
to be represented by a certain number of grid cells (typically a diameter between 6-8
cells), to allow accurate computations of its boundary conditions, the resulting overall
resolutions for the fluid volume can be large. The adaptive coarsening is directly ap-
plicable to problems with moving particles, to refine the computations of their bound-
aries, while coarsening the computations of the fluid volumes. Surface tension forces,

CHAPTER 12. CONCLUSIONS 111

however, are often of importance, as they can be large in comparison to the other forces
that are involved, e.g., electrostatic and Van-der-Waals forces. Hence, the extensions
to compute the surface curvature, as described above, are also important for particle
technology applications.

In conclusion, the LBM is a interesting approach for fluid simulations that is fur-
ther extended by the active LBM research community. The LB free surface algorithm
explained in this thesis makes it possible to efficiently perform realistic simulations of
free surface fluids for a wide variety of applications.

112 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Bibliography

[AA06] Anders Adamson and Marc Alexa. Point-sampled cell complexes.

ACM Trans. Graph., 25(3):671–680, 2006.

[ATKS00] M. Arnold, M. Thies, C. Körner, and R.F. Singer. Experimental and

Numerical Investigation of the Formation of Metal Foam. Material-

sweek, 2000.

[BdLL01] M’hamed Bouzidi, Dominique d‘Humières, Pierre Lallemand, and

Li-Shi Luo. Lattice Boltzmann equation on a two-dimensional rect-

angular grid. J. Comp. Phys., 172(2):704–717, 2001.

[BFS+06] Christian Binder, Christian Feichtinger, Hans-Joachim Schmid, Nils

Thürey, Wolfgang Peukert, and Ulrich Rüde. Simulation of the Hy-

drodynamic Drag of Aggregated Particles. Journal of Colloid and In-

terface Science, 301:155–167, 2006.

[BGD05] Vivek Buwa, Daniel Gerlach, and Franz Durst. Regimes of bubble

formation on submerged orifices. Phys. Rev. Letters, April 2005.

[BGK54] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision

processes in gases. Phys. Rev., 94:511–525, 1954.

[BGOS06] Adam W. Bargteil, Tolga G. Goktekin, James F. O’brien, and John A.

Strain. A semi-lagrangian contouring method for fluid simulation.

ACM Trans. Graph., 25(1):19–38, 2006.

[BR86] J. U. Brackbill and H. M. Ruppel. FLIP: A method for adaptively

zoned, particle-in-cell calculations of fluid flows in two dimensions.

J. Comput. Phys., 65(2):314–343, 1986.

[Bro05] Ilja N. Bronstein. Taschenbuch der Mathematik. Harri Deutsch, 2005.

[BT99] B. Bunner and G. Tryggvason. Direct numerical simulations of three-

dimensional bubbly flows. Physics of Fluids, 11:1967–1969, August

1999.

113

114 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

[CCM92] Hudong Chen, Shiyi Chen, and William H. Matthaeus. Recovery of

the Navier-Stokes equations using a lattice-gas Boltzmann method.

Phys. Rev. A, 45(8):R5339–R5342, 1992.

[CDK+01] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and

R. Menon. Parallel Programming in OpenMP. Academic Press, 2001.

[CKTR03] B. Crouse, M. Krafcyzk, J. Tölke, and E. Rank. A LB-based approach

for adaptive flow simulations. Int. J. Modern Phys. B, 17:109–112, 2003.

[CMT04] Mark Carlson, Peter John Mucha, and Greg Turk. Rigid fluid: An-

imating the interplay between rigid bodies and fluid. ACM Trans.

Graph., 23(3), 2004.

[Del01] Paul J. Dellar. Non-hydrodynamic modes and a priori construction

of shallow water lattice Boltzmann equations. Phys. Rev. E, 65, 2001.

[dGK+02] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, , and Li-

Shi Luo. Multiple-relaxation-time lattice Boltzmann models in three-

dimensions. Philosophical Transactions of Royal Society of London A,

360(1792):437–451, 2002.

[DKvS99] E. Delnoij, J. A. M. Kuipers, and W. P M. van Swaaij. A three-

dimensional CFG model for gas-liquid bubble columns. Chemical

Engineering Science, 54, 1999.

[Don04] S. Donath. On Optimized Implementations of the Lattice Boltzmann

Method on Contemporary Architectures. Bachelor Thesis, High Per-

formance Computing Center, University of Erlangen-Nuremberg,

Aug 2004.

[DS05] P. J. Dellar and R. Salmon. Shallow water equations with a complete

Coriolis force and topography. Phys. Fluids, 17, 2005.

[Dur06] Franz Durst. Grundlagen der Strömungsmechanik. Springer, 2006.

[ELF05] D. Enright, F. Losasso, and R. Fedkiw. A Fast and Accurate Semi-

Lagrangian Particle Level Set Method. Computers and Structures,

83:479–490, 2005.

[EMF02] D. Enright, S. Marschner, and R. Fedkiw. Animation and Rendering

of Complex Water Surfaces. ACM Trans. Graph., 21(3):736–744, 2002.

BIBLIOGRAPHY 115

[ETK+06] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. Stable,

Circulation-Preserving, Simplicial Fluids. to appear, SIGGRAPH 2006

Course Notes: Discrete Differential Geometry, 2006.

[FAMO99] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher.

A non-oscillatory Eulerian approach to interfaces in multimaterial

flows. J. Comp. Phys., 152:457–492, 1999.

[FdH+87] Uriel Frisch, Dominique d’Humières, Brosl Hasslacher, Pierre Lalle-

mand, Yves Pomeau, and Jean-Pierre Rivert. Lattice Gas Hydrody-

namics in Two and Three Dimensions. Complex Systems, 1:649–707,

1987.

[Fei05] C. Feichtinger. Drag Force Simulations of Particle Agglomerates with

the Lattice-Boltzmann Method. Study Thesis, Institute for System

Simulation, University of Erlangen-Nuremberg, Jun 2005.

[Fei06] C. Feichtinger. Simulation of Moving Charged Colloids with the Lat-

tice Boltzmann Method. Diploma Thesis, Institute for System Simu-

lation, University of Erlangen-Nuremberg, Jun 2006.

[FF01] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In

Proc. of ACM SIGGRPAH, pages 23–30, 2001.

[FH98] O. Filippova and D. Hänel. Grid Refinement for Lattice-BGK models.

J. Comp. Phys., 147:219–228, 1998.

[FL04] Raanan Fattal and Dani Lischinski. Target-driven smoke animation.

ACM Trans. Graph., 23(3):441–448, 2004.

[FM96] N. Foster and D. Metaxas. Realistic Animation of Liquids. Graphical

Models and Image Processing, 58, 1996.

[FM97] Nick Foster and Dimitris Metaxas. Controlling fluid animation. In

Proc. of CGI, 1997.

[FOA03] Bryan E. Feldman, James F. O’Brien, and Okan Arikan. Animating

suspended particle explosions. In Proc. of ACM SIGGRAPH, pages

708–715, Aug 2003.

[FOK05] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. Ani-

mating gases with hybrid meshes. ACM Trans. Graph., 24(3):904–909,

2005.

116 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

[Fro79] Arnold Frohn. Einführung in die kinetische Gastheorie. Akademische

Verlagsgesellschaft Wiebaden, 1979.

[GDN88] Michael Griebel, Thomas Dornseifer, and Tilman Neunhöffer. Nu-

merical Simulation in Fluid Dynamics. SIAM, 1988.

[GKT+06] S. Geller, M. Krafczyk, J. Tölke, S. Turek, and J. Hron. Benchmark

computations based on Lattice-Boltzmann, Finite Element and Finite

Volume Methods for laminar Flows. Computers and Fluids, 35 [8-9],

September-November 2006.

[GLS99] W. Gropp, E. Lusk, and A. Skjellum. Using MPI, Portable Parallel Pro-

gramming with the Mesage-Passing Interface. MIT Press, second edition,

1999.

[GLT99] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2, Advances Features of

the Message-Passing Interface. MIT Press, 1999.

[GRWS04] Robert Geist, Karl Rasche, James Westall, and Robert Schalkoff.

Lattice-Boltzmann Lighting. Proc. of Eurographics Symposium on Ren-

dering 2004, pages 355–362, 2004.

[GRZZ91] A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti. Lattice

Boltzmann model of immiscible fluids. Phys. Rev. A, 43, 1991.

[GS03] I. Ginzburg and K. Steiner. Lattice Boltzmann model for Free-Surface

flow and its Application to Filling Process in Casting. J. Comp. Phys.,

185/1, 2003.

[GSLF05] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. Coupling Water

and Smoke to Thin Deformable and Rigid Shells. ACM Trans. Graph.,

24(3):973–981, 2005.

[Gue06] E. Guendelman. Physically-based simulation of solids and solid-

fluid coupling. PhD thesis, Stanford University, 2006.

[Har71] Stewart Harris. An Introduction to the Theory of the Boltzmann Equation.

Holt, Rinehart and Winston Inc., 1971.

[HF01] Jürgen Horbach and Daan Frenkel. Lattice-boltzmann method for the

simulation of transport phenomena in charged colloids. Phys. Rev. E,

64(6), Nov 2001.

BIBLIOGRAPHY 117

[HHL+05] T. R. Hagen, J. M. Hjelmervik, K.-A. Lie, J. R. Natvig, and M. Ofstad

Henriksen. Visual simulation of shallow-water waves. Simulation

Modelling Practice and Theory, 13, 2005.

[HK04] Jeong-Mo Hong and Chang-Hun Kim. Controlling fluid animation

with geometric potential: Research articles. Comput. Animat. Virtual

Worlds, 15(3-4):147–157, 2004.

[HK05] Jeong-Mo Hong and Chang-Hun Kim. Discontinuous fluids. ACM

Trans. Graph., 24(3):915–920, 2005.

[HL97a] X. He and L.-S. Luo. A Priori Derivation of Lattice Boltzmann Equa-

tion. Phys. Rev. E, 55:R6333–R6336, 1997.

[HL97b] X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible

Navier-Stokes equations. J. Stat. Phys., 88:927–944, 1997.

[HN81] C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) Method for the

Dynamics of Free Boundaries. J. Comp. Phys., 39:201–225, 1981.

[HNC02] Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. Interac-

tive Animation of Ocean Waves. July 2002.

[HS66] J. L. Hess and A. M. O. Smith. Calculation of potential flow about

arbitrary bodies. Prog. Aeronaut. Sci., 8, 1966.

[HSCD96] Shuling Hou, James D. Sterling, Shiyi Chen, and Gary Doolen. A

Lattice Boltzmann Subgrid Model for High Reynolds Number Flow.

Fields Institute Communications, 6:151–166, 1996.

[HYP76] J. Hardy, O. De Pazzis Y., and Pomeau. Molecular dynamics of a clas-

sical lattice gas: Transport properties and time correlation functions.

Physical Review A, 13:1949–1960, 1976.

[Igl03] K. Iglberger. Performance Analysis and Optimization of the Lattice

Boltzmann Method in 3D. Study Thesis, Institute for System Simula-

tion, University of Erlangen-Nuremberg, Sep 2003.

[Igl05] K. Iglberger. Lattice-Boltzmann Simulation of Flow around moving

Particles. Master Thesis, Institute for System Simulation, University

of Erlangen-Nuremberg, Jun 2005.

[IGLF06] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Efficient Simu-

lation of Large Bodies of Water by Coupling Two and Three Dimen-

sional Techniques. ACM Trans. Graph., 25, 2006.

118 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a

sketching interface for 3D freeform design. In SIGGRAPH ’99: Proc.

of the 26th annual conference on Computer graphics and interactive tech-

niques, pages 409–416. ACM Press/Addison-Wesley Publishing Co.,

1999.

[JSW05] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for

closed triangular meshes. ACM Trans. Graph., 24(3):561–566, 2005.

[KAG+05] Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip

Dutre, and Markus Gross. A Unified Lagrangian Approach to Solid-

Fluid Animation. Proc. of the 2005 Eurographics Symposium on Point-

Based Graphics, 2005.

[KAG+06] Richard Keiser, Bart Adams, Leonidas J. Guibas, Philip Dutre, and

Mark Pauly. Multiresolution particle-based fluids . CS Technical

Report 520. Technical report, Computer Science Department, ETH

Zurich, 2006.

[KAK+06] Vivek Kwatra, David Adalsteinsson, Theodore Kim, Nipun Kwatra,

Mark Carlson, and Ming Lin. Texturing Fluids. SIGGRAPH Technical

Sketch, 2006.

[KBA+00] C. Körner, F. Berger, M. Arnold, C. Stadelmann, and R.F. Singer. Influ-

ence of Processing Conditions on Morphology of Metal Foams Pro-

duced from Metal Powder. Materials Science and Technology, 16:781–

784, 2000.

[KC04] Pijush Kundu and Ira Cohen. Fluid Mechanics. Elsevier Academic

Press, 2004.

[KCC+06] J. Kim, D. Cha, B. Chang, B. Koo, and I. Ihm. Practical Animation of

Turbulent Splashing Water. Proc. of the ACM SIGGRAPH/ Eurograph-

ics Symposium on Computer Animation, 2006.

[KFCO06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and

James F. O’Brien. Fluid animation with dynamic meshes. ACM Trans.

Graph., 25(3):820–825, 2006.

[KH06] Olga A. Karpenko and John F. Hughes. SmoothSketch: 3D free-form

shapes from complex sketches. ACM Trans. Graph., 25(3):589–598,

2006.

BIBLIOGRAPHY 119

[Kir04] Andrew Kirmse. Game Programming Gems 4. Charles River Media,

2004.

[KKA05] Ryo Kondo, Takashi Kanai, and Ken-ichi Anjyo. Directable animation

of elastic objects. Proc. of the ACM Siggraph/Eurographics Symposium

on Computer Animation, 2005.

[KM90] M. Kass and G. Miller. Rapid, Stable Fluid Dynamics for Computer

Graphics. ACM Trans. Graph., 24(4):49–55, 1990.

[KPR+05] C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser. Parallel Lat-

tice Boltzmann Methods for CFD Applications. In A.M. Bruaset and

A. Tveito, editors, Numerical Solution of Partial Differential Equations

on Parallel Computers, volume 51 of LNCSE, pages 439–465. Springer,

2005.

[Kra01] Manfred Krafczyk. Gitter-Boltzmann-Methoden - von der Theorie

zur Anwendung. Habilitation, 2001.

[KS99] C. Körner and R.F. Singer. Numerical Simulation of Foam Formation

and Evolution with Modified Cellular Automata. Metal Foams and

Porous Metal Structures, pages 91–96, 1999.

[KS00] C. Körner and R.F. Singer. Processing of Metal Foams - Challenges

and Opportunities. Advanced Engineering Materials, 2(4):159–65, 2000.

[KTH+05] C. Körner, M. Thies, T. Hofmann, N. Thürey, and U. Rüde. Lattice

Boltzmann Model for Free Surface Flow for Modeling Foaming. Jour-

nal of Statistical Physics, 121 [1-2]:179–196, October 2005.

[KTL03] M. Krafczyk, J. Tlke, and Li-Shi Luo. Large-eddy simulations with a

multiple-relaxation-time LBE model. International Journal of Modern

Physics B, 17:33–39, 2003.

[KTS02] C. Körner, M. Thies, and R. F. Singer. Modeling of Metal Foaming

with Lattice Boltzmann Automata. Advanced Engineering Materials,

2002.

[Lad94] A. J. C. Ladd. Numerical simulation of particular suspensions via a

discretized Boltzmann equation. Part 2. Numerical results. J. Fluid

Mech., 39:271–311, 1994.

120 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

[lBefitpfwldd04] A lattice Boltzmann ethod for incompressible two-phase flows with

large density differences. T. Inamuro and T. Ogata and S. Tajima and

N. Konishi. J. Comp. Phys., 198:628–644, 2004.

[LC87] William Lorensen and Harvey Cline. Marching Cubes: A High Res-

olution 3D Surface Reconstruction Algorithm. In Computer Graphics

Vol. 21, No. 4, pages 163–169, August 1987.

[LF02] Arnauld Lamorlette and Nick Foster. Structural modeling of flames

for a production environment. In Proc. of ACM SIGGRAPH, pages

729–735, 2002.

[LGF04] F. Losasso, F. Gibou, and R. Fedkiw. Simulating Water and Smoke

With an Octree Data Structure. ACM Trans. Graph., 23(3):457–462,

2004.

[LH06] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. ACM

Trans. Graph., 25(3):579–588, 2006.

[LIG06] Frank Losasso, Geoffrey Irving, and Eran Guendelman. Melting and

burning solids into liquids and gases. IEEE Transactions on Visualiza-

tion and Computer Graphics, 12(3):343–352, 2006. Member-Ron Fedkiw.

[LL00] Pierre Lallemand and Li-Shi Luo. Theory of the lattice Boltzmann

method: Dispersion, dissipation, isotropy, Galilean invariance, and

stability. Phys. Rev. E, 61(6):6546–6562, 2000.

[LLS00] D. P. Lockard, L.-S. Luo, and B. A. Singer. Evaluation of the lattice-

Boltzmann equation solver PowerFLOW for aerodynamic applica-

tions. Technical report, ICASE, 2000.

[Lov03] Jörn Loviscach. Complex Water Effects at Interactive Frame Rates.

Journal of WSCG, 11:298–305, 2003.

[LSSF06] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw.

Multiple interacting liquids. ACM Trans. Graph., 25(3):812–819, 2006.

[LWK03] Wei Li, Xiaoming Wei, and Arie E. Kaufman. Implementing lattice

Boltzmann computation on graphics hardware. The Visual Computer,

19(7-8):444–456, 2003.

[MC98] A. Masselot and B. Chopard. A lattice boltzmann model for particle

transport and deposition. Europhys. Lett., 42:259–264, 1998.

BIBLIOGRAPHY 121

[MCG03a] Matthias Müller, David Charypar, and Markus Gross. Particle-based

fluid simulation for interactive applications. Proc. of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer animation, pages

154–159, 2003.

[MCG03b] Matthias Müller, David Charypar, and Markus Gross. Particle-based

fluid simulation for interactive applications. Proc. of the ACM Sig-

graph/Eurographics Symposium on Computer Animation, 2003.

[MKN+04] Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly,

Markus Gross, and Marc Alexa. Point based animation of elas-

tic, plastic and melting objects. In Proc. of the ACM SIG-

GRAPH/EUROGRAPHICS Symposium on Computer Animation, Aug

2004.

[MMS04] V. Mihalef, D. Metaxas, and M. Sussman. Animation and Control of

Breaking Waves. Proc. of the ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, pages 315–324, 2004.

[Mon05] J. J. Monaghan. Smoothed particle hydrodynamics. Rep. Prog. Phys.,

68:1703–1758, 2005.

[MSRG05] Matthias Müller, Barbara Solenthaler, Richard, and Markus Gross.

Particle-based fluid-fluid interaction. Proc. of the ACM Sig-

graph/Eurographics Symposium on Computer Animation, 2005.

[MST+04] Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidel-

berger, and Markus Gross. Interaction of Fluids with Deformable

Solids. Journal of Computer Animation and Virtual Worlds (CAVW),

15(3-4):159–171, July 2004.

[MTPS04] Antoine McNamara, Adrien Treuille, Zoran Popovic, and Jos Stam.

Fluid control using the adjoint method. ACM Trans. Graph., 23(3):449–

456, 2004.

[MZ88] Guy R. McNamara and Gianluigi Zanetti. Use of the Boltz-

mann Equation to Simulate Lattice-Gas Automata. Phys. Rev. Lett.,

61(20):2332–2335, 1988.

[N. 06] N. Thürey and T. Pohl and U. Rüde and M. Oechsner and C. Körner.

Optimization and Stabilization of LBM Free Surface Flow Simula-

tions using Adaptive Parameterization. Computers and Fluids, 35 [8-

9]:934–939, September-November 2006.

122 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

[NFJ02] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen.

Physically based modeling and animation of fire. In SIGGRAPH ’02:

Proceedings of the 29th annual conference on Computer graphics and in-

teractive techniques, pages 721–728, New York, NY, USA, 2002. ACM

Press.

[PCS04] Frederic Pighin, Jonathan M. Cohen, and Maurya Shah. Modeling

and editing flows using advected radial basis functions. In Proc. of

the 2004 ACM SIGGRAPH/Eurographics symposium on Computer ani-

mation, pages 223–232. ACM Press, 2004.

[PK97] H. R. Pruppacher and J. D. Klett. Microphysics of Clouds and Precipita-

tion. Springer, 1997.

[PKA+05] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutre, Markus

Gross, and Leonidas J. Guibas. Meshless Animation of Fracturing

Solids. ACM Trans. Graph., 24:957–964, 2005.

[PKKG03] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross.

Shape modeling with point-sampled geometry. ACM Trans. Graph.,

22(3):641–650, 2003.

[PKW+03] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde. Opti-

mization and Profiling of the Cache Performance of Parallel Lattice

Boltzmann Codes in 2D and 3D. Technical Report 03–8, Germany,

2003.

[Poh07] Thomas Pohl. Free-Surface Flow Simulation Using the Lattice Boltz-

mann Method on High Performance Computers. PhD Thesis, In-

stitute for System-Simulation, University of Erlangen-Nuremberg,

2007.

[PP04] James Edward Pilliod and Elbridge Gerry Puckett. Second-order ac-

curate volume-of-fluid algorithms for tracking material interfaces. J.

Comput. Phys., 199(2):465–502, 2004.

[PPG04] Mark Pauly, Dinesh Pai, and Leo Guibas. Quasi-Rigid Objects in Con-

tact. Proc. of ACM Siggraph/Eurographics Symposium on Computer Ani-

mation, 2004.

[PTD+04] T. Pohl, N. Thürey, F. Deserno, U. Rüde, P. Lammers, G. Wellein,

and T. Zeiser. Performance Evaluation of Parallel Large-Scale Lattice

BIBLIOGRAPHY 123

Boltzmann Applications on Three Supercomputing Architectures. In

Proc. of Supercomputing Conference 2004, 2004.

[QdL92] Y. H. Qian, D. d’Humières, and P. Lallemand. Lattice BGK Models

for Navier-Stokes Equation. Europhys. Lett., 17(6):479–484, 1992.

[REN+04] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,

W. Geiger, S. Hoon, and R. Fedkiw. Directable photorealistic liquids.

Proc. of the ACM Siggraph/Eurographics Symposium on Computer Ani-

mation, 2004.

[RNGF03] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald Fed-

kiw. Smoke simulation for large scale phenomena. ACM Trans.

Graph., 22(3):703–707, 2003.

[Roh04] M. Rohde. Extending the lattice-Boltzmann method: Novel tech-

niques for local grid refinement and boundary conditions. PhD The-

sis, Technische Universiteit Delft, 2004.

[SC94] X. Shan and H. Chen. Simulation of non-ideal gases and liquid-gas

phase transitiions by the lattice Boltzmann equation. Phys. Rev. E,

49:2941–2948, 1994.

[Sma63] J. Smagorinsky. General circulation experiments with the primitive

equations. Mon. Wea. Rev., 91:99–164, 1963.

[SOOY96] M. R. Swift, E. Orlandi, W. R. Osborn, and J. M. Yeomans. Lattice

Boltzmann simulations of liquid-gas and binary fluid systems. Phys.

Rev. E, 54:5041–5052, 1996.

[SRF05] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex par-

ticle method for smoke, water and explosions. ACM Trans. Graph.,

24(3):910–914, 2005.

[Sta99] Jos Stam. Stable Fluids. Proc. of ACM SIGGRAPH, pages 121–128,

1999.

[Sta03] Jos Stam. Real-Time Fluid Dynamics for Games. Proc. of the Game

Developer Conference, March 2003.

[SU94] J. Steinhoff and D. Underhill. Modification of the Euler Equations for

Vorticity Confinement: Application to the Computation of Interact-

ing Vortex Rings. volume 6, 8, pages 2738–2744, 1994.

124 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

[Suc01] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.

Oxford University Press, 2001.

[Sus03] M. Sussman. A second order coupled level set and volume-of-fluid

method for computing growth and collapse of vapor bubbles. J.

Comp. Phys., 187/1, 2003.

[SY05a] Lin Shi and Yizhou Yu. Controllable smoke animation with guiding

objects. ACM Trans. Graph., 24(1), 2005.

[SY05b] Lin Shi and Yizhou Yu. Taming liquids for rapidly changing targets.

Proc. of the ACM Siggraph/Eurographics Symposium on Computer Ani-

mation, 2005.

[SZ99] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-

surface and interfacial flow. Annu. Rev. Fluid Mech., 31:567–603, 1999.

[SZ04] H. Struchtrup and Y. Zheng. Burnett equations for the ellipsoidal

statistical bgk model. Cont. Mech. Thermodyn., 16(1-2):97–108, 2004.

[Tes04] Jerry Tessendorf. Simulating Ocean Surfaces. SIGGRAPH 2004 Course

Notes 31, 2004.

[TFK+03a] T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito, K. Tanaka,

and H. Ueki. Realistic Animation of Fluid with Splash and Foam.

Computer Graphics Forum, 22 (3), 2003.

[TFK03b] J. Tölke, S. Freudiger, and M. Krafcyzk. An adaptive scheme using hi-

erarchical grids for lattice Boltzmann multi-phase flow simulations.

Computers & Fluids, 17:109–112, 2003.

[Thi05] M. Thies. Lattice Boltzmann Modeling with Free Surfaces Applied to

Formation of Metal Foams. PhD Thesis, Institute for Material Science,

University of Erlangen-Nuremberg, 2005.

[Thu03] Nils Thuerey. A Lattice Boltzmann method for single-phase free

surface flows in 3D. Masters thesis, Dept. of Computer Science 10

System-Simulation, University of Erlangen-Nuremberg, 2003.

[Thu06] Nils Thuerey. Fluid Simulation with Blender. Dr. Dobbs Journal, Jan-

uary 2006.

[TKPR06] N. Thürey, Richard Keiser, Mark Pauly, and U. Rüde. Detail-

Preserving Fluid Control. Proc. of the ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, 2006.

BIBLIOGRAPHY 125

[TKSR02] J. Tölke, M. Krafcyzk, M. Schulz, and E. Rank. Lattice Boltzmann

Simulations of binary fluid flow through porous media. Phil. Trans.

R. Soc. Lond. A, 360:535–545, 2002.

[TLP06] Adrien Treuille, Andrew Lewis, and Zoran Popovic. Model reduc-

tion for real-time fluids. ACM Trans. Graph., 25(3):826–834, 2006.

[TMPS03] Adrien Treuille, Antoine McNamara, Zoran Popovic, and Jos Stam.

Keyframe control of smoke simulations. ACM Trans. Graph.,

22(3):716–723, 2003.

[TOS01] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic

Press, 2001.

[TR04] N. Thürey and U. Rüde. Free Surface Lattice-Boltzmann fluid sim-

ulations with and without level sets. Proc. of Vision, Modelling, and

Visualization VMV, pages 199–208, 2004.

[TR06] N. Thürey and U. Rüde. Stable Free Surface Flows with the Lattice

Boltzmann Method on adaptively coarsened Grids. submitted to Com-

puting and Visualization in Science, preprint version available online, 2006.

[Tre02] Jan Treibig. Simulation von Gas-Feststoff-Mehrphasensystemen mit

dem Lattice Boltzmann Verfahren. Diploma Thesis, University of

Erlangen-Nuremberg, 2002.

[TRS06] N. Thürey, U. Rüde, and Marc Stamminger. Animation of Open Wa-

ter Phenomena with coupled Shallow Water and Free Surface Simu-

lations. Proc. of the ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, 2006.

[Wel54] P. Welander. On the temperature jump in a rarefied gas. Arkiv Fysik,

7, 1954.

[WG00] Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice

Boltzmann Models. Springer, 2000.

[Wil03] J. Wilke. Cache Optimizations for the Lattice Boltzmann Method

in 2D. Study Thesis, Institute for System Simulation, University of

Erlangen-Nuremberg, Feb 2003.

[WLMK04] Xiaoming Wei, Wei Li, Klaus Müller, and Arie E. Kaufman. The

Lattice-Boltzmann Method for Simulating Gaseous Phenomena.

126 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

IEEE Transactions on Visualization and Computer Graphics, 10(2):164–

176, 2004.

[WMT05] Huamin Wang, Peter J. Mucha, and Greg Turk. Water drops on sur-

faces. ACM Trans. Graph., 24(3):921–929, 2005.

[WMT06] Chris Wojtan, Peter J. Mucha, and Greg Turk. Control of Complex

Particle Systems Using the Adjoint Method. Proc. of the ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, 2006.

[Wol02] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

[WWXP06] Changbo Wang, Zhangye Wang, Tian Xia, and Qunsheng Peng. Real-

time snowing simulation. The Visual Computer, pages 315–323, May

2006.

[WZF+03] Xiaoming Wei, Ye Zhao, Zhe Fan, Wei Li, Suzanne Yoakum-Stover,

and Arie Kaufman. Natural phenomena: Blowing in the wind. Proc.

of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer an-

imation, pages 75–85, July 2003.

[YGL05a] H. Yu, S.S. Girimaji, and Li-Shi Luo. Lattice Boltzmann simulations

of decaying homogeneous isotropic turbulence. Phys. Rev. E, 71, 2005.

[YGL05b] Huidan Yu, Sharath S. Girimaji, and Li-Shi Luo. DNS and LES of

decaying isotropic turbulence with and without frame rotation using

lattice Boltzmann method. J. Comput. Phys., 209(2):599–616, 2005.

[YLG06] H. Yu, L.-S. Luo, and S. S. Girimaji. LES of turbulent square jet flow

using an MRT lattice Boltzmann model. Computers & Fluids, 25:957–

965, 2006.

[YMLS03] Dazhi Yu, Renwei Mei, Li-Shi Luo, and Wei Shyy. Viscous flow com-

putations with the method of lattice Boltzmann equation. Progress in

Aerospace Sciences 39, 5, 2003.

[YMS02] Dazhi Yu, Renwei Mei, and Wei Shyy. A multi-block lattice Boltz-

mann method for viscous fluid flows. Int. J. for Numerical Methods in

Fluids, 39, 2002.

[YUM86] Larry Yaeger, Craig Upson, and Robert Myers. Combining physical

and visual simulation and creation of the planet jupiter for the film

2010. In SIGGRAPH ’86: Proceedings of the 13th annual conference on

BIBLIOGRAPHY 127

Computer graphics and interactive techniques, pages 85–93. ACM Press,

1986.

[ZB05] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM

Trans. Graph., 24(3):965–972, 2005.

[Zho04] Jian Guo Zhou. Lattice Boltzmann Methods for Shallow Water Flows.

Springer, 2004.

128 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Appendix A

German Parts

A.1 Inhaltsverzeichnis

Titel: Physikalische Animation von Strömungen mit freien Oberflächen mit der Lattice-Boltzmann-
Methode

1 Einleitung 1

2 Strömungen mit freien Oberflächen 5
2.1 Animation von freien Oberflächen . 5
2.2 Gegenüberstellung von Simulations-Ansätzen 7

3 Die Lattice-Boltzmann Methode 11
3.1 Historische Entwicklung . 11
3.2 Der Basis Algorithmus . 12
3.3 Stabilität . 15
3.4 Parametrisierung . 17
3.5 Herleitung . 18

3.5.1 Die Navier-Stokes Gleichungen . 18
3.5.2 Die Boltzmann Gleichungen . 19
3.5.3 Chapman-Enskog Entwicklung . 20
3.5.4 Herleitung der Lattice Boltzmann Gleichungen 21

3.6 Abschluss . 25

4 Simulation von Strömungen mit freien Oberflächen 27
4.1 Bewegung der Genzfläche . 29
4.2 Randbedingungen . 30
4.3 Initialisierung der Zelltypen . 31
4.4 Vermeidung von Artefakten . 33
4.5 Interaktive Simulationen . 33

5 Bewegliche Hindernisse 37
5.1 Randbedingungen für Hindernisse . 38
5.2 Randbedingungen für bewegliche Ränder 38
5.3 Initialisierung des Gitters . 39

129

130 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

5.4 Generierung der Oberflächen . 42
5.5 Ergebnisse . 44

6 Adaptive Zeitschritte 47
6.1 Adaptive Parametrisierung . 47
6.2 Validierung und Performanz . 50

7 Adaptive Gitter 53
7.1 Gitter Verfeinerung . 53
7.2 Ein Algorithmus zur adaptiven Vergröberung 55
7.3 Validierung . 61
7.4 Performanz . 64

8 Parallelisierung 71
8.1 Parallelisierung mit OpenMP . 71
8.2 Parallelisierung mit MPT . 75

9 Fluid Kontrolle 79
9.1 Verwandte Arbeiten . 79
9.2 Erzeugung von Kontrollpartikeln . 82
9.3 Kontrollkräfte . 82
9.4 Detail-erhaltende Kontrolle . 84
9.5 Ergebnisse . 85

10 Modellierung von Fluiden auf grossen Skalen 89
10.1 Die Flachwassergleichungen . 90
10.2 Hybride 2D/3D Simulation . 92
10.3 Ein Modell für Tropfen . 96
10.4 Ergebnisse und Diskussion . 99

11 Anbindung von 3D Anwendungen 101
11.1 Integration in Blender . 101
11.2 Erweiterungen zur Integration . 102

12 Abschluss 107
12.1 Zusammenfassung . 107
12.2 Diskussion and zukünftige Arbeiten . 108

A Teile der Arbeit auf Deutsch 127

B Lebenslauf 131

A.2 Zusammenfassung

Numerische Strömungssimulationen sind zu einem wichtigen Hilfsmittel vieler tech-
nischer Anwendungen geworden. Dabei stellen besonders die Strömungen mit freien
Oberflächen einen Spezialfall dar, der in vielen Bereichen von Bedeutung ist. Dieser

APPENDIX A. GERMAN PARTS 131

Arbeit konzentriet sich auf die Simulation eines solches System mit zwei Phasen, z.B.
Wasser und Luft. Die freie Oberfläche wird dabei mittels einer einzelnen Fluidphase
und einer scharfen Grenzfläche mit geeigneten Randbedinungen simuliert. Fokus dieser
Arbeit ist die Erstellung von Animationen freier Oberflächen. Weitere Anwendun-
gen sind jedoch unter anderem (Rechtschreibung checken) die Simulation von Met-
allschäumen und von Partikeln (oder Partikelsystemen) in einer Strömung.

Der in dieser Arbeit verwendete Simulationsalgorithmus basiert auf der Lattice-
Boltzmann Methode. Dieser Simulationsansatz ermöglicht die Simulation von kom-
plexen Geometrien und Topologien mit hoher Effizienz. Der Basisalgorithmus wird im
Folgenden um die masseerhaltende Behandlung freier Oberflächen erweitert. Adap-
tive Zeitschritte und adaptive Gitter in Kombination mit einem LES- Modell ermöglichen
die effiziente Simulation detaillierter Strömungen. Im Zusammenspiel mit Rand- be-
dingungen für bewegliche und verformbare Objekte stellt dies eine flexible Basis für
Simulationen von Fluiden mit freien Oberflächen dar.

Für Fluidsimulationen in der Filmindustrie ist es jedoch zusätzlich wichtig, die
Simulation zu kontrollieren. Hierzu wird ein Ansatz vorgestellt, der eine effiziente
Kontrolle ermöglicht, die die natürliche Bewegung des Fluids jedoch so wenig wie
möglich verändert. Bei der Simulation von grossflächigen Wassoberflächen stellen die
unterschiedlichen Skalen von Wellen bis hin zu Tropfen ein technisches Problem dar.
Um solche Simulationen durchzuführen, wird eine Kombination von zwei- und drei-
dimensionalen Techniken vorgestellt. Um die Fähigkeiten des im Rahmen dieser Ar-
beit angefertigten Lösers zu demonstrieren, wurde er in die Open Source Anwendung
Blender integriert.

Am Ende der Arbeit werden weitere Bereiche für zukünftige Arbeiten und mögliche
Erweiterungen des Algorithmus vorgestellt. Dabei ist z.B. die genaue und schnelle
Berechnung der Oberflächenspannung ein wichtiges Thema. Desweiteren werden Er-
weiterungen für die Simulation von Metallschäumen und von Partikelsystemen disku-
tiert.

A.3 Einleitung

Materialien mit einem flüssigen Aggregatszustand spielen in einer Vielzahl von natürlichen
Begebenheiten eine essentielle Rolle. Dadurch sind sie sowohl im Alltag als auch in
vielen Produktionsprozessen wichtig. Die numerische Simulation von gasförmigen
und flüssigen Stoffen ist ein wichtiges Hilsmittel geworden, um z.B. eine Wettervorher-
sage zu machen oder das optimale Profil einer Tragfläche zu bestimmen. In dieser
Arbeit geht es vor allem um Probleme mit zwei Phasen, bei denen eine davon mit
einem vereinfachten Modell behandelt werden kann. Dieser Ansatz ist als Behand-
lung von freien Oberflächen bekannt. In Bild 1.1 und 1.2 sind verschiedene Beispiele
von Strömungen mit freien Oberflächen zu sehen, die von einem solchen Simulator
reproduziert werden können. Obwohl freie Oberflächen einen Speziallfall darstellen,
sind sie dennoch für viele verschiedene Anwendungen, wie Gussprozesse oder die
Erstellung von Animationen von Bedeutung.

Funktionen für physikalisch basierte Animationen sind mittlerweile Bestandteil
vieler grosser 3D-Anwendungspakete, da physikalische Effekte nur schlecht mit kon-

132 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

ventionellen Methoden animiert werden können. Bei physikalisch basierten Methoden
werden die aus der Physik bekannten Gleichungen gelöst oder angenähert um realis-
tische und interessante Bewegungen zu erstellen. Typische Beispiele sind zusammstürzen-
den Kistenstapel oder die Bewegung von Kleidung von animierten Charakteren. Algo-
rithmen für physikalisch basierte Animationen stellen oft eine Kombination von Algo-
rithmen aus ingenieurwissenschaftlichen Anwendungen und der Computergrafik dar.
Während die Ingenieurwissenschaften vor allem an der Genauigkeit einer Berechnung
interessiert sind, gibt es ein solches Mass bei Animationen nicht, da hier vor allem der
visuelle Eindruck eine Rolle spielt. Für praktische Anwendungen ist die Effizienz der
Algorithmen jedoch sehr wichtig. Weiterhin muss die Massenerhaltung garantiert sein
und die sehr niedrige Viskosität von typischen Flüssigkeiten wie Wasser muss vom
Algorithmus behandelt werden können.

Die physikalisch basierte Animation von Flüssigkeiten stützt sich auf die bekannten
Navier-Stokes Gleichungen, die schon seit langem erfolgreich numerisch gelöst wer-
den. Die ersten zweidimensionalen Umströmungen eines Zylinders wurden schon
1930 berechnet, während es bis ca. 1965 dauerte, bis erste dreidimensionale Prob-
leme gelöst wurden. In dieser Arbeit wird ein Verfahren, dass zur Simulation von
Metallschäumen entwickelt wurde, erweitert um die Erstellung von komplexen drei-
dimensionalen Animationen von freien Oberflächen zu ermöglichen. Der Algorith-
mus baut auf der Lattice-Boltzmann Methode (LBM) auf, die einen relativ neuen Ansatz
zur Lösung der Navier-Stokes Gleichungen darstellt. Die zunehmende Popularität ist
dabei vor allem auf den einfachen Basis-Algorithmus und die hohe Effizienz zurück-
zuführen.

Beitr äge dieser Arbeit

Das Ziel dieser Arbeit ist die effiziente, stabile und flexible Simulation von Strömungen
mit freien Oberflächen mit der LBM. Um dies zu erreichen liefert diese Arbeit unter
anderem folgende Beiträge:

• Einen Algorithmus zur Behandlung von beweglichen und verformbaren Hin-
dernissen, um dynamische und realistische Szenen zu ermöglichen.

• Adaptive Zeitschritte für stabile und effiziente Simulationen mit variierenden
Geschwindigkeiten.

• Adaptive Gitter zur Beschleunigung von Berechnungen grosser Fluidvolumen.
Dieser Ansatz kann die Rechenzeit um einen Faktor von mehr als drei verringern.

• Einen Kontrollmechanismus, der die natürliche Bewegung des Fluids so wenig
wie möglich stört.

• Einen hybriden Ansatz zur Simulation von grossflächigen Wasseroberflächen mit
kombinierten zwei- und dreidimensionalen Techniken.In Verbund mit einem par-
tikelbasierten Tropfenmodell kann der Eindruck großer Skalen noch verbessert
werden.

Appendix B

Curriculum Vitae

General Information

Date / Place of Birth: 1979-07-06, Braunschweig, Germany

Office Address: Cauerstr. 6, Room 0.146

D-91058 Erlangen, Germany

Telephone: +49 (0)9131 85-28691

Email: nils@thuerey.de

WWW: http://www.ntoken.com

Education

Jan. 2004 – Oct. 2006 PhD Student at the Institute for System Simulation,

University of Erlangen-Nuremberg, Germany

Feb. 2005 – Apr. 2005 Research visit at the Applied Geometry Group,

ETH Zurich, Switzerland

Aug. 2003 – Dec. 2003 Research visit at the Lawrence-Livermore National Laboratory,

California, USA

Oct. 1998 – Jun. 2003 Study of Computer Science at the

University of Erlangen-Nuremberg

Sept. 1985 – Jun. 1998 Graduation (Abitur) at the German international School

the Hague, Netherlands

133

134 PHYSICALLY BASED ANIMATION OF FREE SURFACE FLOWS WITH LBM

Reviewed Publications

SCA ’06 Detail-Preserving Fluid Control
N. Thürey, R. Keiser, M. Pauly, U. Rüde

SCA ’06 Animation of Open Water Phenomena with coupled
Shallow Water and Free Surface Simulations
N. Thürey, U. Rüde, M. Stamminger

Computers & Mathematics Simulation of Moving Particles in 3D with
with Applications the Lattice Boltzmann Method

K. Iglberger, N. Thürey, U. Rüde

Comp. Vis. in Science Stable Free Surface Flows with the Lattice Boltzmann
(submitted) Method on adaptively coarsened Grids

N. Thürey, U. Rüde

VMV ’06 Free Surface Flows with Moving and Deforming Objects
N. Thürey, K. Iglberger, U. Rüde

VMV ’06 Enhanced Motion Blur Calculation with Optical Flow
Z. Yuanhang, H. Köstler, N. Thürey, U. Rüde

J. Coll. and If. Science Simulation of Hydrodynamic Drag of Aggregated Particles
C. Binder, C. Feichtinger, H.-J. Schmid, N. Thürey,
W. Peukert, U. Rüde

Lecture Notes in CSE Parallel LBM for CFD Applications
C. Körner, T. Pohl, U. Rüde, N. Thürey and T. Zeiser
Book chapter in Numerical Solution of Partial
Differential Equations on Parallel Computers

Computers and Fluids Optimization and Stabilization of LBM Free Surface
Flow Simulations using Adaptive Parameterization
N. Thürey, T. Pohl, U. Rüde, M. Öchsner, C. Körner

J. Stat. Phys. Lattice Boltzmann Model for Free Surface Flow for
Modeling Foaming
C. Körner, M. Thies, T. Hofmann, N. Thürey, U. Rüde

Supercomputing ’04 Performance Evaluation of Parallel Large-Scale LBM
Applications on 3 Supercomputing Architectures
T. Pohl, F. Deserno, N. Thürey, U. Rüde, P. Lammers,
G. Wellein, T. Zeiser

APPENDIX B. CURRICULUM VITAE 135

VMV ’04 Free Surface Lattice-Boltzmann fluid simulations with and
without level sets
N. Thürey, U. Rüde

PARA ’02 Performance Optimization of 3D Multigrid on Hierarchical
Memory Architectures
M. Kowarschik, U. Rüde, Nils Thürey, Christian Weiss

Other Publications

Technical Report 05-4 Interactive Free Surface Fluids with the
Lattice Boltzmann Method
N. Thürey, C. Körner, U. Rüde

Dr. Dobbs Journal Fluid Simulation with Blender, N. Thürey

ASIM ’05 Simulation of moving Nano-Particles with the Lattice Boltzmann
Method in 3D
K. Iglberger, N. Thürey, U. Rüde, H.-J. Schmid, W. Peukert

ASIM ’05 Drag Force Simulations of Particle Agglomerates with
the Lattice-Boltzmann Method
C. Feichtinger, N. Thürey, U. Rüde, C. Binder, H.-J. Schmid, W. Peukert

Master Thesis A single-phase free-surface Lattice-Boltzmann Method
University of Erlangen-Nuremberg, 2003

Study Thesis Cache Optimizations for Multigrid in 3D
University of Erlangen-Nuremberg, 2002

