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Abstract

We will present an algorithm to handle moving
and deforming objects for free surface fluid simu-
lations with thelattice Boltzmann method (LBM).
To achieve this we extend methods available for
flows without a free surface to enables simulations
of moving objects with varying surface roughness,
two-way coupled interaction and improved mass
conservation. We furthermore show how to effi-
ciently initialize boundary conditions for the mov-
ing objects from an arbitrary triangle mesh. The
triangulation of the free surface can be improved
by removing the interface between fluid and an im-
mersed object. We will demonstrate the capabilities
of our approach with two simpler test cases, and
a more complicated simulation using an animated
character as obstacle.

1 Introduction & Related Work

The physically based animation of free surface flu-
ids has become an important aspect for the creation
of computer generated imagery. Since the works
presented in [1] and [2] various approaches for sim-
ulating liquids have become popular and were ex-
tended to handle a variety of problems, such as the
correct handling of moving and deforming objects.
An example for such a case can be seen in Fig. 1,
where an animated character interacts with a fluid.

While algorithms for handling coupled rigid
body simulations with fluids have been developed
for level-set basedNavier-Stokes (NS) solvers [3]
[4], we will in the following present an algorithm
to handle these problems with thelattice Boltz-
mann method (LBM). It originates from discrete
compressible gas simulations [5], and approximates
the NS equations without the need for an iterative
solver by relaxing the incompressibility constraint
[6]. The algorithm has been used in various ar-

Figure 1: Example of interaction between an ani-
mated character and a volume of fluid.

eas, e.g. for single phase fluid computations [7], or
in combination with a VOF model to simulate free
surface flows for metal foaming processes [8]. We
will apply the same free surface model, that will be
briefly explained in Section 2, and which was also
used in e.g. [9]. Another popular approach to ap-
proximate the NS equations aresmoothed particle
hydrodynamics (SPH) solvers [10]. For this class
of methods, deforming objects can be handled as
e.g. shown in [11]. In the following, we will briefly
explain the simulation of free surface fluids with
LBM. Afterwards, boundary conditions for moving
obstacles will be described in more detail. After the
lattice initialization and surface generation we will
discuss three different test simulations.

2 Free Surface Flows with LBM

The Lattice-Boltzmann Method (LBM) is a grid-
based technique that was derived from discrete gas



molecule simulations. Each grid cell stores a set
of distribution functions (DFs), which represent an
amount of fluid moving with a fixed velocity. We
use the common three-dimensional incompressible
LBM model D3Q19i with nineteen grid velocities
ei, i = 1...19. The macroscopic fluid properties,
such as densityρ and velocityv can be calculated
by summation of the DFs, and are needed to calcu-
late the equilibrium DFs for a cell:

feq
i (ρ,v) = wi

[

ρ + 3ei · v −
3

2
v

2 +
9

2
(ei · v)2

]

.

(1)
For theD3Q19i model, the weightsw are given as
w1 = 1/3, w2..7 = 1/18, andw8..19 = 1/36.
The LBM algorithm proceeds by first handling the
movement of the DFs, which is equivalent to copy-
ing them to their adjacent neighbors, and then com-
putes the molecular collisions that would have oc-
curred during this movement. The collisions are
handled by a relaxation towards the equilibrium
with a relaxation factorω that is given by the phys-
ical fluid viscosity. First the streaming of the DFs is
performed, which can be written as:

fi(x, t)′ = fi(x− ei, t) . (2)

Afterwards, the new post-collision DFs for the next
timestep are computed as

fi(x, t + ∆t) = (1 − ω)fi(x, t)′ + ωfeq
i . (3)

An overview of the basic algorithm is shown in
Fig. 2. More details of the algorithm and a deriva-
tion of the model can be found in [12, 13]. To simu-
late a fluid with a free surface we use a method sim-
ilar to theVolume-of-Fluid approach for NS solvers.
A detailed description of the free surface treatment
can be found in various publications, e.g. [8, 14].
It computes a fill fractionǫ for all interface cells,
and updates these values according to the interface
movement. Furthermore, the adaptive time stepping
algorithm from [15] is applied.

The next sections will describe obstacle bound-
ary conditions for the LBM. Similar to the free sur-
face handling, they require additional flags to deter-
mine the type of a cell. The necessary equations and
algorithms for initialization will be described in the
following.

3 Obstacle Boundary Conditions

The standard way to implement obstacles for LBM
fluid simulations is thebounce-back scheme for no-

slip boundary conditions. They result in a zero nor-
mal and tangential velocity at the obstacle bound-
ary. In terms of DFs this means that during the
streaming step the DFs are reflected at the obstacle
surface, thus Eq. (2) is changed to

fi(x, t + ∆t)′ = fĩ(x, t) (4)

for all cells where the neighbor atx + ei is an ob-
stacle cell. Note thatfĩ denotes the DF along the
inverse velocity vector offi, thuseĩ = −ei. These
boundary conditions can be used to model ”sticky”
walls, that slow down the fluid – e.g. rough stone
surfaces.

Another type of boundary conditions are free-slip
boundary conditions, which only result in a normal
velocity of zero, but leave the tangential velocity
at the obstacle interface unchanged. Hence, dur-
ing the streaming step of the LBM, the DFs are re-
flected only along the obstacle normal, in contrast
to Eq. (4), where they are reflected along normal
and tangential direction. This free-slip scheme is
shown to the right of Fig. 3. Note that while no-slip
boundary conditions can be handled locally for a
cell, free-slip conditions require DFs from a neigh-
boring cell. Furthermore, the free-slip handling is
equivalent to the no-slip boundaries if the neighbor-
ing cell is not a fluid cell. Free-slip boundary con-
ditions can be used to model smooth surfaces that
do not slow down the fluid, such as glass walls.

To model materials that have properties in be-
tween the two extremes described above, the free-
and no-slip boundary conditions can be linearly in-
terpolated. Given the reflected DFsfr from the
free-slip treatment, this gives:

fi(x, t + ∆t)′ = wpfĩ(x, t) + (1 − wp)fr(x, t) ,
(5)

wherewp is the parameter to control the surface
smoothness. Forwp = 1 Eq. (5) reduces to no-
slip boundary conditions, whilewp = 0 yields a
free-slip boundary.

The boundary conditions here have first order ac-
curacy (for arbitrary shapes). Higher order bound-
ary conditions, that take into account the position of
the obstacle surface along each lattice connection,
the most common second order one being [16], can
also be applied for LBM. These, however, would
significantly increase the computational overhead
for moving obstacles, and Eq. (7) will demonstrate
that the first order boundary conditions already give
good results.



Figure 2: Overview of the LBM steps for a single cell near a no-slip obstacle.

4 Moving Obstacles

If the obstacle is moving, the momentum of the
movement has to be transferred to the fluid. Here
we use the model described in [17]. While the basic
no-slip handling from Eq. (4) remains the same, an
additional forcing term is added during streaming:

fi(x, t+∆t)′ = fĩ(x, t)+2 wi ρf 3 ei ·uo, (6)

whereρf is the fluid density anduo the obstacle
velocity at the obstacle boundary. The fluid density
can be approximated by the initial density, hence
ρf = 1.

For free-slip boundary conditions, the accelera-
tion should only occur in the normal direction of the
obstacle surface. The velocity to be used in Eq. (6)
is thus projected onto the surface normal. The forc-
ing term is now only added to those DFs where the
reflection is reduced to Eq. (4). This is due to the
fact that tangential to the free-slip surface there is no
acceleration of the fluid due to the surface smooth-
ness. Thus the fluid adjacent to a free-slip obstacle
only needs to be accelerated along the normal di-
rection. To still keep the flux balance for free-slip
boundaries, the acceleration term of Eq. (6) needs to
be multiplied by2. For free- and part-slip boundary
conditions Eq. (6) is thus changed to

fi(x, t + ∆t)′ = wp

(

fĩ(x, t) +

2 wi ρf 3 ei · uo

)

+ (1 − wp)
(

fr(x, t) +

wr(x, t) 2 wi ρf 3 ei ·
[

(no · uo)no

]

)

, (7)

whereno is the obstacle normal atx. wr is an indi-
cator function that has a value of one if the stream-
ing of fr reduces to a no-slip reflection, and zero
otherwise. The forcing term is thus only applied

during the stream step for DFs such as the center ar-
row of the source cell in Fig. 3 near free-slip bound-
aries.

While this deals with the obstacle to fluid mo-
mentum transfer, the force acting upon the obstacle
due to the fluid pressure and movement can be cal-
culated as

Fo =
∆x

∆t

∑

∀xb

19
∑

i=1

eiwo(xb + ei∆t)

(

fĩ(xb + ei∆t, t) +

fi(xb + ei∆t, t + ∆t)
)

, (8)

wherewo(x) is an indicator function that is equal
to one when the cell atx is a fluid cell, and zero
otherwise. Here the first sum traverses all bound-
ary cells with positionxb of the obstacle. Eq. (8)
thus approximates the surface integral of the shear
stresses and pressure forces along the obstacle sur-
face. Hence, with Eq. (6) and Eq. (7) the fluid to
obstacle coupling is computed, while the combina-
tion with Eq. (8) enables full two-way coupled fluid
simulations.

5 Lattice Initialization

Triangular meshes were used to describe the obsta-
cle regions. For the simulation, the movement and
position information has to be transferred from the
triangle mesh to the LBM grid. This is done by cre-
ating point samples from the triangle mesh, that en-
sure a closed layer for the obstacle surface and can
furthermore be used to generate velocity informa-
tion for the boundary conditions.



Figure 3: The different types of boundary conditions for LBMobstacles.

5.1 Point Samples

The point samples on the mesh surface are not re-
quired to be regularly spaced, but have to ensure
that a closed layer of obstacle cells is created for
a given LBM grid resolution. No fluid element is
allowed to move from one side of a thin obstacle to
the other. Thus, no two fluid cells on opposing sides
of an obstacle should be connected by a lattice ve-
locity vector. Depending on the size of a grid cell
∆x a feature sizesf = ∆x/2 is used in the fol-
lowing. Given a triangle with pointsp1,p2,p3 and
normaln, the number of divisions along the sides
are computed as

su = floor(
|p2 − p1|

sf

) , sv = floor(
|p3 − p1|

sf

) .

(9)
Then the pointso on the surface can be computed
using barycentric coordinates:

ou,v,1, ou,v,2 =
(

1 −
u + 1/4

su

−
v + 1/4

sv

)

p1 +

u + 1/4

su

p2 +
v + 1/4

sv

p3 ±
1

4
sfn ,

with 0 ≤ u ≤ su, 0 ≤ v ≤ sv, v + u ≤ 1 . (10)

Note that Eq. (10) creates two points, each of which
are offset by the triangle normal and feature size.
Eq. (9) guarantees, that the points have a sufficiently
small spacing in a plane of the grid, while the nor-
mal offset of Eq. (10) ensures that the obstacle layer
has a thickness of one to two cells.

To ensure that a minimum of points is generated,
the pointsp1,p2 andp3 of the triangle are permuted

to ensure that the valuessu andsv of Eq. (9) are
minimal. Hence, the two shortest sides of the trian-
gle are used for point generation.

5.2 Grid Initialization

The whole collection of pointsP for an obstacle ob-
ject thus contains the points generated by Eq. (10)
for all triangles, and the original vertices of the
mesh. The vertices are also offset by±1/4sfn, and
are necessary assu andsv can be zero. This would
mean that no points are generated in the plane of the
triangle, but as the triangle is smaller than a single
grid cell, its vertices suffice to initialize the LBM
grid. This, however, also means that if the mesh is
finely triangulated, not all of the vertices would be
necessary for initialization. In this case an external
program or suitable software library could be used
to simplify the mesh, possibly according to the fea-
ture size. In general, the method described above
assumes that the feature size if usually significantly
smaller than the average triangle size, which is nor-
mally the case for detailed fluid animations.

For animated meshes it is required that the ani-
mation is described by movements of the vertices,
thus the triangle structure itself doesn’t change. Be-
fore each time step of the LBM, the point setP(t)
is generated for the current time step. Furthermore
either the point set of the last time stepP(t − ∆t)
can be used, or generated anew. Now a loop over all
pointsp(t)i in P(t) yields the grid positions of ob-
stacle cells to be initialized for the current time step.
The obstacle velocityu for Eq. (4) can be computed



Figure 4: Overview of the obstacle initialization for a single triangle of the mesh.

with

u =
(

p(t)i − p(t − ∆t)i

)

/∆x . (11)

For optimization purposes, the acceleration term of
Eq. (4) can be precomputed and stored in the LBM
grid, as obstacle cells do not require DFs to be
stored. As often more than a single point ofP maps
to one grid cell, these multiple values could be av-
eraged with appropriate weights. However, initial-
izing a cell with the first point that maps to it also
yields good results – this scheme will also be used
in the following.

During this pass over the obstacle points the max-
imum velocity on the obstacle surface is easily com-
puted, and can be used to adapt the time step size of
the simulation correspondingly. In a second pass of
the point setP(t−∆t) old obstacle cells have to be
removed from the grid. These can be initialized by
empty cells, or, if a fluid cell is in the neighborhood
with an interface cell. The latter case is necessary
as fluid cells are not allowed to be in the neighbor-
hood of an empty cell, so alternatively the fluid cell
could be converted to an interface cell.

5.3 Mass Conservation

Note that the boundary conditions so far do not con-
serve mass – due to the approximation of the ob-
stacle boundary with cells, the moving object can
cover a different number of cells during its move-
ment. For flows without a free surface, hence with
completely submerged objects, this is usually un-
problematic. However, with free surface flows, this
can lead to significant errors in the mass conserva-
tion. To alleviate this problem, the change of mass
in the system due a moving no-slip obstacle can be

directly computed as

∆Mo = Madd − Msub +
∑

∀xb

2 wi ρf 3 ei · uo .

(12)
HereMadd denotes the gained mass from interface
cells that are newly created in the current LBM step
due to the object movement (as explained in the
previous paragraph). On the other hand,Msub is
the mass that was lost from all fluid cells that were
reinitialized as new boundary cells during the last
step. As a third component, the sum of all accel-
eration terms from Eq. (4). Note that Eq. (12) as-
sumes no-slip boundary conditions, and thus has to
be changed as explained above for free- or part-
slip obstacles. By accumulatingMo(t + ∆t) =
Mo(t)+∆Mo for each moving obstacle in the sim-
ulation, the change of mass due to this object can be
calculated. A parameter that can be freely chosen is
the fill fraction ǫn for the newly created interface
cells from the pass over the last object position with
P(t − ∆t). We now setǫn = 0 if Mo(t) ≥ 0,
and likewiseǫn = 1.5 whenMo(t) < 0. As the
front side of the object removes mass from the sys-
tem, the back side can thus be used to control the
mass loss. Note that if further accuracy of the mass
correction is necessary, the initialization of allǫn

could be normalized by the number of new inter-
face cells. This, however, would require a second
pass over these cells.

6 Surface Generation

While the fluid can usually be reconstructed directly
from the fluid fraction values of the free surface
tracking, the surfaces adjacent to obstacles require
additional treatments. The fluid surface itself is



Figure 6: Test case for moving rigid bodies: a rotating box islowered into a basin of fluid. The upper row of
pictures uses no-slip boundary conditions for the box, the middle one part-slip and the lowest one free-slip
boundary conditions. An increased amount of splashes is visible in the lower rows of pictures.

Figure 5: Comparison of the two surface generation
approaches. To the left, surfaces are generated for
domain sides and around the submerged obstacle.
To the right, these surfaces are removed with the
algorithm described in Section 6.

given by the fill fraction isolevelλ of λ = 1/2, and
can be triangulated using e.g. the marching cubes
algorithm [18]. The obstacle initialization as de-
scribed above will result in a fluid surface around
the obstacle surface without touching it. Thus a sep-
aration of fluid and obstacle surfaces is visible, in
contrast to a real fluid, that would connect with the
immersed object at the interface and not have a vis-
ible surface in the immersed regions.

This appearance can be gained by extrapolating
the fluid fraction values into the obstacle layer. We
thus set fluid fraction values for obstacle cellsǫb

in the following way: ǫb(x) = 1 is used for all
obstacle cells atx with fluid, but without interface
cell neighbors. If an obstacle cell has both fluid and
interface neighbors, its fluid fraction value is set to
an average fluid fraction with

ǫb(x) =

∑

19

i=1
wb(x + ei)ǫb(x + ei)

∑

19

i=1
wb(x + ei)

, (13)

wherewb(x) is an indicator function that is one if
the cell atx is either a fluid, interface or empty cell,
and zero otherwise. In a second pass, all obstacle
cells that have not been modified, and thus are not in
the neighborhood of the fluid, are set toǫb = 0.99λ.
This is necessary as the initialization from Section 5
can result in two layers of obstacle cells, in which
case the surface should be moved further inwards to
ensure that is inside of the original mesh.

An example of this modified surface generation
can be seen in Fig. 5. To the left of Fig. 5 an im-
age of the uncorrected fluid surface is shown, while
the right side shows the actual moved fluid surface.
Note that for transparent objects it will moreover be



Figure 7: Two-way coupling of the boundary conditions. An object consisting of two connected sphere is
bouncing through a channel filled with fluid. The arrows indicate the fluid velocity.

necessary to clip the fluid surface with the obstacle
mesh to hide the inner parts while retaining an exact
connection of the fluid surface with the obstacle.

7 Results

In the following three different simulations for the
algorithm described above will be presented. The
first, and relatively simple, test case with a rigid
moving object can be seen in Fig. 6. Here a sim-
plified ”mixer” is modelled – a box is lowered into
the fluid while rotating along the y-axis. This simu-
lation was performed with a resolution of1283 and
a viscosity of water. The following simulation times
are given for a standard Pentium4 with3.0GHz. For
the mixer example the simulation took27 seconds
per frame on average. Each row of pictures uses dif-
ferent boundary conditions for the obstacle. From
top to bottom the boundary conditions are: no-slip,
part-slip with wp = 0.002 and free-slip. As the
effect ofwp is highly non-linear, the weight has to
be small in order to show a noticeable effect of the
free-slip boundary conditions. It can be seen that
the fluid is correctly accelerated and pushed away
by the rectangular shape. The free-slip simulation
exhibits a larger amount of splashes, as there is less
slowdown in tangential direction. As expected, the
part-slip boundary conditions lie in between the two
other cases.

A different setup to test the two-way coupling of
the moving boundary conditions is shown in Fig. 7.
Here an moving object consisting of two connected
sphere is pushed through a channel with fluid and
two fixed rectangular obstacles. The object is accel-
erated up to the fluid velocity, then bounces through
the two fixed obstacles. In this case a simulation
resolution of60 × 30 × 30 was used, with no-slip

boundary conditions for all obstacles. Due to the
small size, the total simulation only took ca.15 sec-
onds.

The boundary conditions for deforming meshes
are demonstrated in Fig. 8, where an animated char-
acter is interacting with the fluid. The simulation
with a resolution of166 × 166 × 200 took on av-
erage244 seconds per frame, and the obstacle ini-
tialization with more than125k points for the5038
triangle mesh ca.7% of the time for each LBM
step.

8 Conclusions

We have presented an algorithm to efficiently han-
dle arbitrary triangle meshes as moving obstacles
of varying surface smoothness for LBM free sur-
face simulations. Our approach guarantees a closed
layer of obstacle cells and improves mass conser-
vation. We have moreover shown how to remove
the interface between the fluid and an obstacle for
the triangulation. As demonstrated with test cases
of varying complexity, the algorithm is physically
accurate and does not significantly increase compu-
tation times.

In the future, the method could be extended by
e.g. coupling it to simulations for rigid bodies, de-
forming elastic objects or even fracturing. Although
this might not be crucial for most physically based
animations, it would also be interesting to develop
higher order methods for free-slip boundary condi-
tions and efficient boundary conditions that guaran-
tee mass conservation.



Figure 8: Example of a deforming mesh from an animated character interacting with the fluid.
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Figure 1: Test case for moving rigid bodies: a rotating box islowered into a basin of fluid. The upper row of
pictures uses no-slip boundary conditions for the box, the middle one part-slip and the lowest one free-slip
boundary conditions. An increased amount of splashes is visible in the lower rows of pictures.

Figure 2: Two-way coupling of the boundary conditions. An object consisting of two connected sphere is
bouncing through a channel filled with fluid. The arrows indicate the fluid velocity.

Figure 3: Example of a deforming mesh from an animated character interacting with the fluid.


