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Abstract

In this paper we present our algorithm for animating fluids with a free surface. It is based on the Lattice-Boltzmann Method, instead of
a direct discretization of the Navier-Stokes equations. This allows a relatively simple treatment of the free surface boundary conditions
at high computational efficiency, without sacrificing the underlying physics. We give a detailed description of our algorithm, focussing
on details that are required to achieve a good visual appearance. Furthermore we describe how to implement our adaptive time stepping
technique to achieve flexible and stable simulations. We will demonstrate the speed and capabilities of the method with animations from
different interactive test cases. These run with, on average, more than 20 frames per second on a standard desktop PC.

1. Introduction

As fluids with a free surface are part of our every day life their believ-
able animation is crucial for any virtual environment that tries to achieve
a realistic appearance. Despite of the high complexity, there is a wide se-
lection of work enabling the production of high quality visualizations of
fluids for e.g. raytracing. [FAMO99] and [EMF02], among others, have
established variants of the level set algorithm to track the free surface,
while computing the underlying fluid motion with a discretization of the
Navier-Stokes equations. Although these methods are stable, flexible and
realistically simulate complex flows, the algorithms require many steps
and usually a high number of particles to correctly trace the fluid inter-
face and conserve mass. Still, their success poses the challenge to intro-
duce free surface fluids into real-time applications like games or virtual
reality environments.

2. Previous Work

Up to now, the NS solver proposed e.g. in [Sta03] has been used to com-
pute flows such as smoke in real-time. [WZF∗03] have also used the
Lattice Boltzmann Method (LBM) to compute interactive flows using
graphics hardware. They achieved an impressive number of cell updates
per second, however, only for flows without a free surface. [MCG03]
proposed smoothed particle hydrodynamics to interactively compute the
motion of a free surface fluid. Although they achieved good results, the
particles representing the fluid require irregular memory accesses due to
the changing neighborhoods of the particles, and a high number of these
is required to get a smooth representation of the fluid surface. The tri-
angulation of the fluid surface furthermore can not be directly computed
from the particles, and thus requires additional work.

The free surface algorithm presented here uses the LBM, explicitly con-
serves mass up to machine precision and includes the tracking of the
fluid surface. The surface tracking is similar to Volume of Fluid (VOF)
methods for NS solvers [HN81], which can be used to achieve results of
high quality, as e.g. shown in [Sus03]. Though, in contrast to the standard

VOF methods, the algorithm presented here directly computes the mass
changes from the values available in the LBM. Other multiphase and free
surface models for LBM such as [GRZZ91] and [GS03] exist, but the
boundary conditions presented in the following are inexpensive to com-
pute. Thus, the algorithm achieves a high performance on common PC
architectures as it furthermore requires no particles to be traced. The reg-
ularity of the cell array results in a high cache efficiency, thus overcom-
ing the memory bottleneck that often limits the performance [PKW∗03].
The algorithm performs very well in parallelized versions, as was shown
in e.g. [PTD∗04], and thus will furthermore benefit from CPUs with mul-
tiple cores.

The algorithm was originally developed for the simulation of metal
foams to optimize and enhance the production process [KS00]. The liq-
uid metal behaves almost like water, and the huge areas of fluid gas inter-
face required an efficient and accurate algorithm to compute the devel-
opment of the foam. [KTS02] produced first results in two dimensions
validating the physical correctness of the free surface boundary condi-
tions. In [Thü03] and [TR04] the algorithm was then extended to three
dimensions. There it’s applicability to the animation of free surface flows
was demonstrated by several larger test cases. We will show that with
the modifications presented here, the algorithm is not only interesting
for technical applications or raytracing, but also for a wide variety of the
afore mentioned real-time applications.

3. Why Lattice Boltzmann?

The LBM can be imagined as a type of cellular automaton – the sim-
ulation region is divided into a cartesian (and in our case, equidistant)
grid of cells, each of which only interacts with cells in its direct neigh-
borhood. An overview of the method can also be found e.g. in [Suc01].
While conventional solvers directly discretize the Navier-Stokes (NS)
equations, the LBM is essentially a first order explicit discretization of
the Boltzmann equation in a discrete phase-space, which describes all
molecules with their corresponding velocities. The LBM evolved from
methods for the simulation of gases, that computed the motion of each

c© University of Erlangen-Nuremberg, Department of Computer Science 10,
System Simulation (LSS) Technical Report 05-4.



N. Thürey, U. Rüde, C. Körner / Interactive Free Surface Fluids with the Lattice Boltzmann Method

F F

FF

F F

Main Loop arrives

at Fluid Cell

near Obstacle

Reflect DFs

from Obstacle

 Cells

Store DFs 

and continue 

with next cell...

set1

set2

Collide using

Eq. 2,3 and 

then 4

Stream from

adjacent CellsD3Q19

Velocity vectors: 

e1         = (0,0,0)

e2,3      = (+/- 1,0,0)

e4,5      = (0,+/- 1,0)

e6,7      = (0,0,+/- 1)

e8..11   = (+/- 1,+/- 1,0)

e12..15 = (+/- 1,0,+/- 1)

e16..19 = (0,+/- 1,+/- 1)

Figure 1: To the left the D3Q19 model with its 19 velocities can be seen. To the right, the D2Q9 model is used to give an overview over the steps of
the basic LBM algorithm for a fluid cell next to a vertical obstacle. Note that for clarity the velocity vectors shown in this and the following figures are
drawn with half their absolute length.

molecule in the gas purely with integer operations. For the LBM larger
volumes of the fluid are averaged, and the movement and collision of
these particle ensembles through the grid is computed, resulting in an
accurate reproduction of the NS equations. This can be shown in two
different ways – either by Chapman-Enskog expansion from statistical
physics [FdH∗87], or by direct discretization of the Boltzmann equa-
tion [HL97b].

A general comparison of LBM solvers and conventional NS solvers is
difficult, however [GKT∗04] recently compared state of the art solvers
of both kinds. They came to the conclusion, that there is no clear winner,
but the LBM even performs better for some problems. Generally, a sim-
ple LBM implementation performs very well for complex geometries.
As each LBM cell contains information not only about the fluid velocity
and pressure, but also about their spatial derivatives, the method allows a
very accurate representation of obstacles even for coarse grids. The free
surface of a fluid often results in complex and moreover time dependent
topologies. This was the motivation for the development of the method
presented here, which is especially simple due to the ability of LBM to
model complex boundary conditions. Nowadays the LBM is available in
commercial fluid solvers [LLS00], which are in production use of e.g.
aerospace or car companies.

The underlying base algorithm – the standard LBM – consists of two
steps, the stream- and the collide-step, usually combined with no-slip
boundary conditions for the domain boundaries or obstacles. The sim-
plicity of the algorithm shows during implementation, which for the base
algorithm requires roughly a single page of C-code. Using LBM the par-
ticle movement is restricted to a very limited number of directions. We
use a three dimensional model with 19 velocities (commonly denoted as
D3Q19), but there also exist models with 15 or 27. The most common
model for two dimensions is D2Q9 with nine velocities. The D3Q19
model with its velocity vectors e1..19 is shown in Figure 1 , together with
an overview of the basic LBM algorithm, using the D2Q9 model for
clarity. As all formulas for LBM usually only depend on the so-called
particle distribution functions (DFs), all of these two and three dimen-
sional models can be used with the method presented here. However, for
three dimensions D3Q19 is the preferable model.

For each of the velocities a floating point number ( f1..19) representing
the fraction of particles moving with this velocity needs to be stored.
For simplicity, the size of a cell ∆x and the size of a time step ∆t both
are normalized to 1. Thus in the D3Q19 model there are particles not
moving at all ( f1), moving with speed 1 ( f2..7) and moving with speed√

2 ( f8..19). Note that the order of specifying DFs and velocity vectors
used here is not the only possibility. As long as both DFs and velocities
use the same, any permutation is valid. In the following, a subscript of ĩ

will denote the value from the inverse direction of a value with subscript
i. Thus fi and fĩ are opposite DFs with inverse velocity vectors eĩ =−ei.

During the first part of the algorithm (the stream step) all DFs are ad-
vected with their respective velocities. Due to the normalized time step
and cell size this results in a movement of the floating point values to the
neighboring cells, as shown in Figure 1. Formulated in terms of DFs the
stream step can be written as:

f ′ĩ (x, t +∆t) = fĩ(x+ ei, t). (1)

These post-streaming DFs f ′i have to be distinguished from the standard
DFs fi, and are never really stored in the grid. The stream step alone
is clearly not enough to simulate the behavior of incompressible fluids,
which is governed by the ongoing collisions of the particles among each
other. The second part of the LBM, the collide step, amounts for this by
weighting the DFs of a cell with the so called equilibrium distribution
functions, denoted by f eq. These depend solely on the density and ve-
locity of the fluid. Here we use the incompressible model from [HL97a].
The density and velocity can be computed by summation of all the DFs
for one cell:

ρ = ∑ fi u = ∑ei fi . (2)

Now for a single direction i, the equilibrium DF f eq
i can be computed

with:

f eq
i = wi

[

ρ +3ei ·u− 3
2

u2 +
9
2
(ei ·u)2

]

, where (3)

wi = 1/3 for i = 1,

wi = 1/18 for i = 2..7,

wi = 1/36 for i = 8..19.

The equilibrium DFs represent the state of the fluid where during each
time step the amount of particles that are pushed out of each discrete
direction by collision is equal to the amount that is pushed into each
direction again. This, however, does not mean the fluid is not moving,
only that the values of the DFs would not change, if the whole fluid
was at equilibrium state similar to a Stokes flow. The collisions of the
molecules in a real fluid are approximated by linearly relaxing the DFs
of a cell towards their equilibrium state. Thus, each fi is weighted with
the corresponding f eq

i using:

fi(x, t +∆t) = (1−ω) f ′i (x, t +∆t) + ω f eq
i . (4)

Here ω is the parameter that controls the viscosity of the fluid. It has
to be in the range of 0..2, where values close to 0 result in very vis-
cous fluids, while values near 2 result in more turbulent flows. Usually
these are also visually more interesting, however for values close to 2 the
method can become instable when high velocities occur. To enhance the
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Figure 2: Here an overview over the steps that have to be executed for an exemplary interface cell is given.

stability of the algorithm, so called multi relaxation time (MRT) mod-
els [LL00] could be used for the collision. However, we have found the
model described here to be sufficient. The parameter ω relates to the
kinematic viscosity of a fluid ν given in units of the LBM lattice with
ν = (1/ω−0.5). The values computed with Equation 4 are stored as DFs
for time t +∆t. As each cell needs the DFs of the adjacent cells from the
previous time step, usually two arrays for the DFs of the current and the
last time step are used.

The easiest way to implement the no-slip boundary conditions is the
bounce back rule, that results in a placement of the boundary in the mid-
dle of fluid and obstacle cells. If the neighboring cell at (x + ei) is an
obstacle cell during streaming, the DF from the inverse direction of the
current cell is used. Thus Equation 1 changes to:

f ′ĩ (x, t +∆t) = fi(x, t). (5)

Hence, an implementation of the algorithm described so far might con-
sist of a flag field to distinguish fluid and obstacle cells, and an array
DF[2][sizex][sizey][sizez][19] of single-precision floating point variables.
During a loop over all cells in the grid, each cell collects the neighbor-
ing DFs according to Equation 1 or Equation 5, for adjacent fluid and
obstacle cells respectively. The density and velocity are computed and
used to compute the equilibrium DFs which are then weighted with the
streamed DFs and written into the other array, continuing with the next
cell in the grid. Subsequent time steps alternate in streaming and collid-
ing the DFs from one array to the other. Note that using Equation 5 the
DFs for obstacle cells are never touched.

Looking at the algorithm so far it can be noted that in comparison with
a simple finite-difference NS solver, the implementation is much sim-
pler, however, requires more memory. An NS solver would only require
(sizex ∗ sizey ∗ sizez ∗ 7) floating point values, but for some cases might
need higher resolutions to resolve obstacles with the same accuracy. Us-
ing a more sophisticated LBM implementation, the memory require-
ments could be reduced to ((sizex + 1) ∗ (sizey + 1) ∗ (sizez + 1) ∗ 19).
Furthermore, note that an adaptive time step size is common practice for
NS solver, while the size of the time step in the LBM is by default fixed
to 1. In Section 5 we explain how to adaptively resize the time step for
LBM [TPR∗05]. As the maximum velocity may not exceed 1/3 in or-
der for the LBM to remain stable, it might still need several time steps
to advance to the same time an NS solver would reach in a single step.
However each of these time steps usually requires much less work, as
the LBM can be computed very efficiently on modern CPUs, and does
not require additional computations such as the pressure correction step.

4. Free surfaces

The simulation of free surfaces clearly requires a distinction between re-
gions that contain fluid and regions that don’t. This is done by marking
cells that contain no fluid as empty in the flag field. As with obstacle

cells, the DFs of these cells can be completely ignored during the sim-
ulation, however, in contrast to boundary cells, the fluid might at some
point in the simulation move into this area. To track the fluid motion, an-
other cell type is introduced: the interface cell. These cells form a closed
layer between fluid and empty cells. Here the real work for the simula-
tion and tracking of the free surface is done. It consists of three steps –
the computation of the interface movement, the boundary conditions at
the fluid interface, and the re-initialization of the cell types. In the fol-
lowing, the steps that are executed for an interface cell instead of the
standard stream and collide from the previous section are described. On
overview of the procedure is given in Figure 3 .

4.1. Interface movement

The movement of the fluid interface is tracked by the calculation of the
mass that is contained in each cell. For this two additional values need
to be stored for each cell, the mass m and the fluid fraction ε . The fluid
fraction can be computed with the mass by dividing it through the den-
sity of the cell (ε = m/ρ). Similar to VOF method, the interface motion
if track by computing the the fluxes between the cells. However, as the
DFs correspond to a certain number of particles, the change of mass can
be directly computed from the values that are streamed between two ad-
jacent cells for each of the directions in the model. For an interface cell
and a fluid cell at (x+ ei) this is simply

∆mi(x, t +∆t) = fĩ(x+ ei, t)− fi(x, t). (6)

The first DF is the amount of fluid that is entering this cell in the current
time step, the second one the amount that is leaving the cell. The mass
exchange for two interface cells has to take into account the area of the
fluid interface between the two cells. This is approximated by averaging
the fluid fraction values of the two cells. Thus Equation 6 becomes

∆mi(x, t +∆t) =
(

fĩ(x+ ei, t)− fi(x, t)
) (ε(x+ ei, t)+ ε(x, t))

2
. (7)

Both equations are completely symmetric, as of course the amount of
fluid leaving one cell, has to enter the other one and vice versa, which
means that ∆mi(x) = −∆mĩ(x + ei). For interface and neighboring fluid
cells the mass change has to conform to the DFs exchanged during
streaming, as for fluid cells no additional computations need to be per-
formed. Their fluid fraction is always equal to one, and their mass equals
their current density. For interface cells the mass change values for all
directions are added to the current mass, resulting in the mass for the
next time step:

m(x, t +∆t) = m(x, t)+∑∆mi(x, t +∆t). (8)

4.2. Free surface boundary conditions

As described above, the DFs of empty cells are never accessed. However,
interface cells always have empty cell neighbors. Thus during the stream
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standard cell at (x+ ei) no fluid neighbors at (x+ ei) no empty neighbors at (x+ ei)

standard cell at (x) ( f ĩ(x+ ei, t)− fi(x, t)) fĩ(x+ ei, t) − fi(x, t)
no fluid neighbors at (x) − fi(x, t) ( fĩ(x+ ei, t)− fi(x, t)) − fi(x, t)

no empty neighbors at (x) f ĩ(x+ ei, t) fĩ(x+ ei, t) ( fĩ(x+ ei, t)− fi(x, t))

Table 1: Substituting the first term of Equation 7 with the appropriate one given here can force undesired interface cells to be filled or emptied.

step only DFs from fluid cells or other interface cells can be streamed
normally, while the DFs that would come out of the empty cells need
to be reconstructed from the boundary conditions at the free surface.
These can be handled on a per cell basis in the LBM, and do not require
e.g. additional ghost layers around the interface. It is assumed, that the
atmosphere has a pressure of ρA = 1, and that the fluid has a much lower
kinematic viscosity. So the gas at at the interface simply flows in the
direction it is pushed by the fluid. In terms of distribution functions, this
means that if at (x+ ei) there is an empty cell:

f ′ĩ (x, t +∆t) = f eq
i (ρA,u)+ f eq

ĩ (ρA,u)− fi(x, t), (9)

where u is the velocity of the cell at position (x) and time t according
to Equation 2. The pressure of the atmosphere onto the fluid interface is
introduced by using ρA for the density of the equilibrium DFs. Applying
Equation 9 to all directions with empty neighbor cells would result in a
full set of DFs for interface cells. However, to balance the forces on each
side of the interface, the DFs coming from the direction of the interface
normal are also reconstructed. Thus if the DF fi would be streamed from
an empty cell, or if

n · eĩ > 0 with n =
1
2





ε(xj-1,k,l)− ε(xj+1,k,l)
ε(xj,k-1,l)− ε(xj,k+1,l)
ε(xj,k,l-1)− ε(xj,k,l+1)



 (10)

holds, fi is reconstructed using Equation 9. Here xj,k,l simply denotes
the position of the cell at plane l, row k and column j in the array. So the
normal is approximated with central differences of the fluid fraction in
each spatial direction.

Now all DFs for the interface cell are valid, and the standard collision
is performed (Equation 4). The density, that was calculated during col-
lision, is now used to check whether the interface cell filled or emptied
during this time step:

m(x, t +∆t) > (1+κ)ρ(x, t +∆t) → cell filled, (11)

m(x, t +∆t) < (0−κ)ρ(x, t +∆t) → cell emptied.

We use an additional offset κ = 10−3 instead of 0 or 1 for the emptying
and filling thresholds to prevent the new surrounding interface cells from
being re-converted in the following step. Instead of immediately convert-
ing the emptied or filled cells themselves, their positions are stored in a
list (one for emptying, another one for filling cells), and the conversion
is done when the main loop over all cells has been completed.

4.3. Flag re-initialization

This step takes place when all cells have been updated, and has to take
care of two important things: the layer of interface cells has to be closed
again once the filled and emptied interface cells have been converted into
their respective types, and the conservation of mass has to be maintained
during the conversion. As empty cells always have a mass of 0 while
fluid cells have a mass equal to their density, interface cells that have
filled or emptied according to Equation 11 usually have an excess mass
upon conversion, that needs to be distributed to the neighboring interface
cells.

First the neighborhood of all filled cells is prepared. All neighboring

empty cells are converted to interface cells. For each of these the aver-
age density ρavg and velocity vavg of the surrounding fluid and interface
cells is computed, and the DFs of the empty cells are initialized with
the equilibrium f eq

i (ρavg,vavg). Here it is necessary to remove any in-
terface cells that are needed as boundary for a filled cell from the list of
emptied interface cells. During the same pass, the flag of the filled cells
is changed to fluid. Likewise, for all emptied cells the surrounding fluid
cells are converted to interface cells, simply taking the former fluid cell’s
DFs for each corresponding new interface cell. Furthermore, the emptied
interface cells are now marked as being empty. In a second pass, the ex-
cess mass mex is distributed among the surrounding interface cells for
each emptied and filled cell. mex is equal to the mass of the cell m for
emptied cells (according to Equation 11 this value is negative), and can
be calculated as (m−ρ) for filled cells.

Negative mass values in emptied interface cells, like the mass values
larger than the density in filled ones, mean that the fluid interface moved
beyond the current cell during the last time step. To account for this, the
mass is not distributed evenly among the surrounding interface cells, but
weighted according to the direction of the interface normal n (which is
computed as in Equation 10):

m(x+ ei) = m(x+ ei)+ mex(νi/νtotal). (12)

Here νtotal is the sum of all weights νi, each of which is computed as

νi =

{

n · ei if n · ei > 0
0 otherwise

for filled cells, and

νi =

{

−n · ei if n · ei < 0
0 otherwise

for emptied cells.

(13)

As the mass of the adjacent interface cells changes, the fluid fraction
also needs to be changed accordingly. For the steps described so far it
is important that they yield the same results independent of the order in
which the filled and emptied cells are converted. Thus the interpolation
for empty cells may only interpolate values from cells that aren’t new
interface cells themselves. Once the cell conversions are complete, the
current grid is valid, and could be advanced by again starting the main
loop over all cells.

4.4. Interface cell artifacts

The algorithm described so far is already usable to animate free surfaces.
However, it can happen that single interface cells are left behind when
the fluid moves on, or that interface cells get enclosed in fluid. Although
these cases do not perturb the fluid simulation, they are visible as ar-
tifacts. To effectively get rid of these problems the following rules can
be added to the algorithm. The basic idea is to force leftover interface
cells without fluid neighbors to empty, and force interface cells with-
out empty neighbors to fill. This can be done by substituting the term
( fĩ(x + ei, t)− fi(x, t)) from Equation 7 according to Table 4. In rare
cases, where these cells still remain interface cells, they can simply be
treated as filled or emptied cells. Thus, if a cell has no fluid neighbors
and its mass drops below (0.1 ·ρ), it is treated as having emptied in this
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Figure 3: Two animations of a single drop falling into a pool of fluid. The upper row of pictures uses a domain size of 283 running with an average of
76 frames per second, while the lower one uses a resolution of 383 with an average frame rate of 27.

time step. Likewise cells with no fluid neighbors and a mass larger than
(0.9 ·ρ) are treated as full.

5. Adaptive time steps

As the maximum velocities for an animation are often not a priori
known, the parameterization of the LBM can be difficult. Very small
step sizes are often required to keep the method stable. This section de-
scribes how to alleviate this problem by allowing a resizing of the time
step size, e.g. if the velocities in the simulation become too large. Val-
idation of this method can be found in [TPR∗05], while here we will
focus on detail necessary for implementation. None of the equations so
far contains the size of the time step, except for distinguishing the val-
ues of the two arrays. Thus, the DFs have to be explicitly recalculated to
account for a new time step size.

Given an initial simulation setup with a value for ω and an external force
g, the time step has to be reduced if the norm of the maximum velocity
umax exceeds a certain value:

|umax| >
1
6
/ξ , with ξ =

4
5
. (14)

We have chosen 1/6 as the velocity threshold, as it is the half of 1/3, at
which point the DFs according to Equation 3 would become negative. If
Equation 14 holds, we choose a new step size of

∆tn = ξ ∆to, (15)

where ∆to, the old step size is initially equal to 1. In the following, a
subscript of o will denote values before the time step change, while a
subscript of n will indicate values for the new time step size. As for
LBM the value of ω also depends on the size of the time step, it changes
according to:

ωn = 1/

[

st

(

1
ωo

− 1
2

)

+
1
2

]

, (16)

with st = ∆tn/∆to. The new acceleration in each time step is then

gn = s2
t go. (17)

To account for the new time step size, the velocity and also the density
deviation from the median density ρmed have to be rescaled for each
cell. Hence, after calculating ρo and uo as usual with Equation 2 for an
interface or fluid cell, the new values can be computed with:

ρn = st (ρo −ρmed)+ρmed , un = st uo. (18)

For interface cells, this also changes the values of m and ε:

mn = mo(ρo/ρn) , εn = mn/ρn (19)

The median density can be calculated from the total fluid volume V and
the total mass M as ρmed = V/M. The total volume is calculated by
summing the values of ε over all cells (for fluid cells ε = 1), while the
M is the sum of all masses (equal to the cell density for fluid cells).

As each DF contains information about the current deviation of the par-
ticles in the cell from the equilibrium, these non-equilibrium parts have
to be rescaled as well. Using ρn and vn the final DFs f ?

i of the current
cell can be calculated with:

f ?
i = s f

[

f eq
i (ρo,uo)+ sω

(

fi − f eq
i (ρo,uo)

)]

, where

s f = f eq
i (ρn,un) / f eq

i (ρo,uo)

sω = st(ωo / ωn). (20)

The values f ?
i are now stored together with mn and εn, and the next cell

in the grid is treated. Of course, the time step can also be enlarged again
once the fluid comes to rest. If

|umax| < ξ
1
6

(21)

we set the step size to ∆tn = ∆to/ξ . Note that a smaller time step results
in a higher value of ω . This means that there is a lower limit for the size
of a time step – for stability we require ω < 1.99. On the other hand, the
time step size is limited by acceleration due to the external force per time
step. For the examples shown in Section 6 we have chosen |g| < 0.001.
Note that it might be necessary to reduce this value if more fluid is added,
as for the test case shown in Figure 4 . The easiest way to perform the
resizing of the time step, is to track the maximum velocity during an
update, and in a separate loop re-scale the DFs if a time step change is
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Figure 4: A stream of fluid and two drops, in the top and bottom row, respectively, hit a rectangular container partly filled with fluid. Both are
screenshots from our sample application, that allows the user to interactively place the drops.

at hand. The rescaling could also be combined with the next collision
of each cell, however, as the rescaling requires only 1% of the overall
computational time, this would not result in a noticeable speedup.

The DF rescaling procedure described here is similar to that of LBM
with grid refinement, details can be found in e.g. [FH98]. In addition
to the enhanced stability due to the adaptive time steps, the animations
shown in Figure 3 would run roughly 1.5 and 2.3 times slower, for the
small and the large test case, respectively, without the adaptive resizing
of the time step.

6. Results

The capabilities of the algorithm will be shown using four different se-
tups, two with obstacles, and two without. All of them use values for
ω between 1.85 and 1.95. The pictures are screenshots from real-time
calculations performed on a standard Pentium 4 CPU (Northwood core)
with 3.0 GHz, 512KB Level 2 Cache, and a state of the art graphics card.
The latter, however, was not a limiting factor for the shown test cases.
The number of frames per second can be seen in the upper left corner
of each picture. It includes the calculation of the fluid movement and
the visualization of the surface using a marching cubes algorithm. We
simply use the fluid fraction values ε and triangulate the isosurface at
ε = 0.5. As the values of ε are cut off at 0 or 1 for empty or fluid cells,
respectively, we perform a filtering step before triangulation to acquire
more accurate normals and a smoother appearance of the fluid surface.
Including the triangulation the whole visualization requires ca. 10% of
the total computational work for the shown animations. For most of them
the outer rectangular walls of the domain are invisible to more clearly
show the motion of the fluid inside.

The screenshots of Figure 3 are from a test case where a single drop is
falling into the center of a pool of liquid. For the bottom row of pic-
tures the size of the computational domain is 383, with on average more
than 10000 interface or fluid cells. This number is also given for all an-
imations of the accompanying video, as it, together with the occurring
maximum velocities, determines the overall performance. The anima-

tion of Figure 3 runs with an average frame rate of 27, which drops to
11 once the waves from all 4 corners of the domain splash together in
the middle, resulting in high upward velocities. Calculating the same an-
imation with a resolution of 283 (top row of Figure 3) and on average
more than 4000 used cells results in a similar fluid motion. In this case
the minimal and average frame rate are 35 and 76, respectively. For the
383 case, the simulation itself with 2500 LBM steps takes 16.4 seconds
on the Pentium 4 system. Using an Athlon 64 4000 with 2.4 GHz and
1MB Level 2 Cache, the same calculations can be performed in 13.1
seconds. Depending on the current ratio of interface and fluid cells, our
implementation can handle more than 2 million cell updates per second,
and up to 3 million updates on the Athlon 64 system. To gain this perfor-
mance, it is important to optimize the flag array tests, and unroll loops
over the 19 distribution functions for standard fluid cells.

Screenshots from our interactive demo application are shown in Fig-
ure 4. Here a user can paint drops or lines of fluid into the domain with
the mouse, resulting in turbulent and chaotic flow patterns. In both cases
the average frame rate drops towards the end of each animation, when
around 10000 cells used. However, with frame rates between 20 and 30
the application remains very responsive.

Figure 5 and 6 show animations with obstacles in the domain. In the first
case, fluid is poured into one corner of a Z-shaped domain, filling it with
fluid. The second example is again from an interactive program run, and
shows drops of fluid falling into a bowl shaped obstacle in the middle
of the domain. Especially the latter case results in very complex flows.
Here the size of the domain is 443 with up to 6000 cells being filled
with fluid. The average frame rate is over 40 as the fluid always comes
to rest between the subsequent drops. The high velocities near the end
of the animation, when more than 15 drops are falling in short intervals,
are successfully handled by the adaptive time stepping, and only result
lower frame rates.
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Figure 5: A stream of fluid fills up a Z-shaped domain, with an average frame rate of 26. In the end more than 11000 cells of the 363 grid are filled
with fluid.

7. Conclusion and Outlook

We have presented a simple, explicitly mass conserving algorithm for
simulating fluids with free surfaces. Its strength are the computational
efficiency, which allows simulations with reasonable domain sizes at in-
teractive frame rates. Furthermore, the algorithm produces physically
correct results, and includes the tracking of the fluid surface without the
need for additional particles or markers. As it is part of the LBM frame-
work, the algorithm is ready to be combined with previous research in
this area, e.g. adaptive grid coarsening or rigid body simulation coupling.

We are currently working on efficient algorithms to include surface ten-
sion into the simulation either from the fluid fractions themselves, or
from the triangulated surface. Moreover, we are trying to improve the
surface reconstruction. The triangulation of the isosurface does not ac-
curately represent the volume of the fluid, and the visual appearance of
the triangulation could be improved as well.
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