
Free Surface Lattice-Boltzmann fluid simulations
with and without level sets

Nils Thürey, Ulrich R̈ude

University of Erlangen-Nuremberg
System Simulation Group

Cauerstr. 6, 91054 Erlangen, Germany
Email: Nils.Thuerey@cs.fau.de

Abstract

We present two variants of free surface Lattice-
Boltzmann fluid simulations for the animation
of liquids in computer graphics. The Lattice-
Boltzmann method is an attractive alternative to
conventional fluid solvers, due to its simplicity and
flexibility, especially for changing geometries and
topologies. While our first method directly calcu-
lates the mass fluxes between the cells of the com-
putational grid, another variant of the method is ex-
plained, that uses level sets to track the fluid sur-
face. This has advantages for the smoothness of the
fluid surface and improves the representation of de-
tails in the free surface, but makes the conservation
of mass more difficult. Several examples will be
shown to highlight the differences between the two
methods.

Figure 1: A simulation of six bubbles rising in a
container with fluid.

1 Introduction

The simulation of fluids with free surfaces is im-
portant for a variety of technical applications like
foaming or casting processes, and moreover, the
correct animation of fluids is a challenge in the
field of photo realistic visualization of physical phe-
nomena for computer graphics. In both cases the

correct treatment of the interface between gas and
fluid determines the accuracy of both the results
and the plausibility of the visual appearance. The
motion of a fluid is governed by theNavier-Stokes
equations(NSE) which describe the evolution of
the velocity and pressure of the fluid. In con-
trast to conventional computational fluid dynamics
solvers, which discretize the macroscopic differen-
tial equations, the method presented here will use
theLattice-Boltzmann method(LBM). It represents
the fluid as a cellular automaton to solve the under-
lying microscopic transport equations. Level sets
will be used to track the movement of the free sur-
face, along which special boundary conditions will
be applied to calculate the appropriate values for ve-
locity and pressure at the interface.

Section 2 will present related work in the area
of fluid animation and LBM simulations, the basic
Lattice-Boltzmann algorithm will be described in
more detail in Section 3, and an overview of level
set methods for fluid simulations will be given in
Section 4. Section 5 will describe the free surface
LBM model, followed by a geometric curvature cal-
culation algorithm, and the combined LBM level set
free surface algorithm. First results of the level set
algorithm will be presented in the results section,
together with some comparisons of LBM simula-
tions with and without level sets.

2 Related work

Several algorithms for the simulation of multi-phase
systems with the LBM exist [3]. Drawbacks of
these methods are, e.g. instabilities for greatly dif-
fering densities of the phases or smeared out regions
for interface tracking [5]. The first restriction is
a severe limitation for computer graphics applica-

VMV 2004 Stanford (California), USA, November 16–18, 2004

tions, as the two phases are usually a gas and liquid.
Smeared out interface representations, on the other
hand, result in higher resolution requirements for
the simulation, and thus require more computations
than a simulation that could resolve the same fluid
interface on a smaller grid. The LBM itself, how-
ever, is an interesting alternative to Navier-Stokes
solvers, mainly due to its simplicity and the capabil-
ity to handle complex geometrical and topological
boundary conditions [8]. The free surface method
described here, which is also used in e.g. [7], does
not have these drawbacks, and can simulate a sin-
gle fluid phase without the necessity of additionally
computing the motion and pressure of the gas phase.

The relevance of fluid simulations has been
shown in a variety of publications. Chen et. al
[2] were among the first to use computational fluid
dynamics to compute motions of fluids for com-
puter graphics. In [4] methods for successfully
dealing with complex fluid surfaces were shown.
These algorithms commonly use discretizations of
the Navier-Stokes equations, with differing forms of
time stepping and stabilizations [14]. Although the
LBM has become an established method in fluid dy-
namics research, it is up to now not commonly used
for animations in computer graphics. The LBM has
been used for effects like wind [18] and was imple-
mented in graphics hardware [19], but in both cases
without simulating a free surface flow.

3 The Lattice-Boltzmann method

The LBM usually works on an equidistant grid of
cells, each of which stores a discrete number of
velocities, the particledistribution functions(DFs).
For two-dimensional simulations nine directions are
commonly used (D2Q9 model), while for three di-
mensions, the D3Q19 model with nineteen veloci-
ties is the most common. The directions of the ve-
locity vectors are shown in Figure 2. The follow-
ing examples and equations will assume a D3Q19
model, but are directly transferable to the two di-
mensional case. Each DF represents a number of
particles in the fluid that moves along the direction
of its velocity vector. Thus, for each time step for
a cell at positionx a DF fi(x, t) has to be stored
as a floating-point value for each velocity direction
(i = 1..19), with the direction vectorsei defined as

(0, 0, 0) for i = 0

D3Q19 D2Q9

Figure 2: The velocities of the D3Q19 and D2Q9
LBM models.

(±1, 0, 0) for i = 1, 2

(0,±1, 0) for i = 3, 4

(0, 0,±1) for i = 5, 6

(±1,±1, 0) for i = 7..10

(0,±1,±1) for i = 11..14

(±1, 0,±1) for i = 15..18

Note that the first DFf0 represents the particles in
the cell which are at rest. From these values, the
macroscopic values for densityρ and velocityv can
be easily computed with the moments off .

ρ =

19∑
i=1

fi , v =
1

ρ

19∑
i=1

fiei (1)

The algorithm proceeds in two steps – thestream
and thecollide steps. During streaming, the parti-
cles are moved with their corresponding velocities.
As the time step is normalized to a length of1, the
particles directly move to the neighboring cell along
their velocity direction, as shown in Figure 3. Af-
ter each streaming step, all cells have a complete
set of particle distribution functions again. The col-
lide step subsequently accounts for the collisions
between the particles that occur in a real fluid dur-
ing the movement. This is done by relaxing the in-
coming DFs from streaming with a set of equilib-
rium distribution functionsfeqi that can be calcu-
lated for each cell with its density and velocity from
Eq. (1). The equilibrium distribution functions are
defined as:

feqi = wiρ
[
1 +

3

2
u2 + 3ei · u +

9

2
(eiu)2

]
(2)

wherewi are weights that depend on the length of
the velocity vector:

wi =
1

3
for i = 0

666

a single cell at time t
after collision

at time t+1
after streaming

Figure 3: The distribution functions of a single cell
at time before and after the streaming step.

wi =
1

18
for i = 1..6

wi =
1

36
for i = 7..18

The value of the distribution function for the next
time stepf ′i is calculated by a weightω that is set
according to the viscosity of the fluid.

f ′i = (1− ω)fi + ωfeqi (3)

with ω =
2

6ν + 1
(4)

Hereν is the viscosity of the fluid in lattice units.
For stability reasons, the value of omega has to be
in the range of0..2. The combined equation for the
stream and collide step is:

fi(x + ei4t, t+4t)− fi(x, t) =

−4t ω (fi(x, t)− feqi (x, t)) (5)

and is known as the BGK equation due to its ap-
proximation of the particle collisions [1] with a sin-
gle parameter. Additionally, external forces like
gravity can be applied by accelerating the fluid in
each cell before the calculation of the equilibrium
distribution functions. No-slip boundary conditions
for the LBM are implemented by reflecting the DFs
at the boundary. Hence for each cell, instead of
copying the neighboring DF from a boundary cell
during streaming, its own opposing DF is taken.
The results in a normal and tangential velocity of
zero along the boundary.

4 Level sets

Level sets are a well-known method for front track-
ing – they have been applied to a variety of prob-
lems from computational vision to physical simu-
lations [12]. For the class of level set algorithms

the surface is represented as the level set of a con-
tinuous higher dimensional functionφ(x). Usually
the zero level set is used to represent the surface,
which meansφ(x) = 0 for all points that lie on the
surface. To simplify the calculations, it is useful to
defineφ as being a signed distance function. This
means for the surfaceΓ of a volumeΩ:

φ(x) = 0 ∀x ∈ Γ

φ(x) = −d(x) ∀x ∈ Ω

φ(x) = d(x) ∀x 6∈ Ω , where

d(x) = min(| x− x′ |) ∀x′ ∈ Γ

φ is then advected with the velocitiesv(x) that
must be known whereφ is defined, and in our
implementation are calculated by the LBM fluid
solver. The evolution ofφ is given by the solution
of the advection/convection equation:

φt + v · ∇φ = 0 (6)

whereφt is the temporal derivative ofφ and∇ de-
notes the gradient operator. Thus, instead of a La-
grangian front representation, which would advect
a certain number of particles on the surface in the
velocity field, level set methods use an Eulerian ap-
proach, and advect a continuous function implicitly
representing the surface. This has a number of ad-
vantages – the surface will not break up due to an
insufficient number of particles (a common prob-
lem for Lagrangian surface tracking), and the nor-
mal and curvature can be easily calculated. For ap-
plications like fluid simulations,φ can be stored as
an additional value in each cell, whose value is the
distance from the cell center to the nearest point on
the surface, see Figure 7. The easiest way to solve
Eq. (6) is to use finite differences and upwinding.
Depending upon the direction of the velocity, each
spatial derivative of the gradient∇φ is calculated
with one of its adjacent neighbors. Considering the
spatial derivative in one direction, e.g. the x deriva-
tive atφi = φ(xi, y, z) can be calculated as:

φx =

{
φi−φi−1
4x , vi > 0

φi+1−φi
4x , vi < 0

(7)

where4x is the size of a cell in x direction. Using
this approximation of the components of the gradi-
ent, the advection ofφ can be calculated with the
following formula:

φ(x, t+4t) = φ(x, t)− (∇φ · v)4t (8)

666

For better accuracy, higher order methods are usu-
ally desirable. Directly extending this approach, a
more accurate derivative ofφ can be found by ap-
proximatingφ as a polynomial of higher order, and
using the derivative of this polynomial. Polynomi-
als of third order are commonly used, the coeffi-
cients for these can be computed from divided dif-
ferences of correspondingly higher order. To fur-
ther increase the accuracy Osher et al. use weight-
ing factors to compute the divided differences of
third order using the values ofφ where it is smooth
[10]. With this method, the order of the level set
advection can be increased to five. The accuracy of
time stepping can also be improved: instead of per-
forming a simple Euler step, other commonly used
time stepping methods can be applied – for exam-
ple modified Euler (midpoint rule) and higher order
Runge-Kutta methods [13]. For the stability of the
method it is usually required, that the velocities are
smaller in each dimension than the resolution of the
grid (CFL condition). Since the velocities from the
LBM solver are used, this causes no problems, be-
cause for the stability of LBM the velocities of the
fluid have to be significantly smaller than the grid
size. This also means that higher order time step-
ping algorithms do not substantially improve the
front tracking.

An inherent problem of the level set methods de-
scribed so far, when using them for tracking the in-
terface of a fluid, is the loss of mass. It can be shown
with simple test cases, that under-resolved regions
of the level set can vanish during the advection. E.g.
thin layers of fluid, or small drops can incorrectly be
removed from the simulation this way. To alleviate
this problem Enright et. al propose a hybrid level set
method in [4], that additionally advects two types of
particles on both sides of the level set. These par-
ticles are used to reconstruct the level set in under-
resolved regions, and significantly improves mass
conservation this way.

Another class of algorithms that is closely linked
to the level set methods arefast marching methods.
They can be used to efficiently compute the evolu-
tion of a surface along its normal direction and rep-
resent an explicit form of upwinding. By computing
the time the surface would need to reach a certain
cell, fast marching methods can be used to compute
signed distance functions or extrapolate velocities.
The latter case is commonly needed for fluid sim-
ulations, as these compute the velocities inside the

Figure 4: A square drop of fluid is falling down into
a container. The upper picture is taken from a sim-
ulation using level sets, while the simulation of the
lower picture uses the mass tracking algorithm.

fluid, the level set method, however, requires values
for the velocity on both sides of the surface to main-
tain the validity and smoothness of the signed dis-
tance function around the surface. Hence, the algo-
rithm that will be explained in Section 7, also uses
the fast marching method to extrapolate the fluid ve-
locities into the gas region in each time step.

5 Free surface tracking

The free surface algorithm was first demonstrated
for a two-dimensional problem in [6] and is based
on tracking the mass of fluid throughout the com-
putational grid, coupled with boundary conditions
for the free surface. With small extensions it can be
applied to 3D problems.

The gas and fluid phase of a free surface simula-
tion require a distinction between cells that contain
no fluid (only gas), interface cells which are par-
tially filled, and cells completely filled with fluid.
An exemplary configuration is shown in Fig. 5. The
latter type of cells can be treated as described in
Section 3, and no computations are necessary for

666

FG G G

G G

G

GFF

FFF FFF

FFFFFFFFF

FFF

FFF

FFF

FFF

FFF

FFF

FF

F

F

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

F

F

F F

F FF F FF F

G G

G G

G G

G GG G

G G G G

G G

G G

G G

G G

G G

G G

G G

F

Fluid

Gas

Gas
Gas I

II

II

II

I

I I I I

IIIII

II

I

I

I I I

I I I

I

I

I

I

I I

G FIempty (gas) cell interface cell fluid cell

Figure 5: The LBM free surface algorithm distin-
guishes between fluid, interface and empty cells.

empty cells. Only interface cells need to track the
amount of fluid they contain. As this amount usu-
ally changes during time, the mass exchange with
all neighboring fluid and interface cells is computed
by subtracting the outgoing DFs from the incoming
ones during the stream step:

m(x, t+4t) = m(x, t) +
19∑
l=1

ε(xei , t) + ε(x, t)

2
(fI(xei , t)− fi(x, t)) (9)

wherexei = x + ei, andm(x, t) denotes the mass
of the cell at positionx and timet. ε(x, t) is the
fraction of the cell that is filled with fluid. As empty
cells are not included in the computation, all DFs
which would be streamed from empty cells need to
be reconstructed for the interface cells. This can
be achieved by recalculating the equilibrium DFs,
using the velocity of the interface cell (the gas is
assumed to have the same velocity as the fluid close
to the interface) and the gas density.

fI(x, t+ 1) = (feqi (u, ρ) +

feqI (u, ρ)) · σ − fi(x, t) (10)

Hereσ is a factor to control the curvature force and
gas pressure, andfI is the distribution function op-
posite tofi. u andρ are the velocity and density of
the interface cell. For the atmosphere, the gas den-
sity is simply the default density of the LBM simu-
lation. For the treatment of bubbles, the gas density
is tracked by storing an initial mass for a bubble,
and calculating its volume for each time step. A
high gas density (σ > 1) results in a pressure force
at the fluid interface, pushing the fluid away, while
a lower pressure (σ < 1) applies a force towards the
gas phase. This reconstruction step ensures that all

DFs are known for interface cells. Therefore, these
cells can be treated in the usual way during colli-
sion as described above. The algorithm can deal
with bubbles in the fluid by storing an id with each
empty cell that identifies the bubble it belongs to.
Coalescence of bubbles can be detected when an in-
terface cell has empty neighbors with differing bub-
ble id’s. The two bubbles then can be combined by
adding their masses and volumes, and reassigning
the corresponding empty cell bubble id’s. The at-
mosphere can also be treated as a bubble with con-
stant pressure. Our current implementation does not
recognize when new bubbles form due to gas re-
gions that get enclosed by fluid in the course of the
simulation. However, this could be done by adding
an additional segmentation pass after the cell re-
initialization.

Once interface cells become completely filled or
empty – indicated by a mass of zero or equal to the
density, respectively – their type has to be changed
accordingly. This can also cause neighboring fluid
or empty cells to be changed to interface cells, since
the layer of interface cells has to be closed. Neigh-
boring empty and fluid cells would result in a loss
of mass, as a DF copied to the empty cell would
not be included in the simulation anymore. Thus, a
closed layer of interface cells is necessary to track
the interface motion correctly, for details we refer
to [15].

6 Geometric curvature calculation

During the reconstruction with Eq. (10), the surface
tension can also be included by modifying the pres-
sure coefficientσ according to the interface curva-
ture. One possibility to compute the curvature of the
fluid surface is to use the geometry generated with
the marching cubes algorithm [9]. This algorithm
is usually used to visualize isosurfaces from scalar
fields, and generates a closed triangulated surface
for a given isolevel. For the free surface LBM
simulation, the mass values from each cell can be
used to calculate the isosurface, using an isolevel
of 0.5. The points generated for the triangulation
can be used to determine the curvature along two
coordinate axis planes. The two planes are deter-
mined according to the approximated surface nor-
mal from the scalar field. For each dimension, a cir-
cle through three chosen points is constructed. The
two radii are then averaged to compute the mean

666

Figure 6: A comparison of two breaking dam sim-
ulations – the left one uses level sets, the right one
the mass tracking algorithm.

curvature, and modifyσ according to the surface
tension of the fluid to be simulated. Depending on
the side of the interface, the sign of the curvature
may need to be inverted.

While this works well for large curvatures, espe-
cially for smooth fluid regions, errors in the com-
puted curvature can occur, and lead to flickering of
the fluid surface together with the generation of ar-
tificial velocities. In [16], these problems were re-
duced by using the triangulated surface itself for the
computation of the curvature, instead of a selection
of single points. Nevertheless, this also significantly
increases the computational overhead, and the accu-
racy of the method varies depending on the under-
lying triangulation.

7 LBM free surfaces with with level
sets

Due to these problems, an LBM method using level
sets to track the fluid surface for the LBM simu-
lation was implemented. As described in Section 4,
the fluid surface given by the amount of fluid in each
LBM cell can also be described using the zero level
set of a signed distance function. From the initial
fluid configuration, the level set can be initialized
with two passes of the fast marching method. From
the interface cells of the simulation, one pass con-
structs the distance values outside, the other one in-
side of the fluid. From then on, the values of the
signed distance function can be used to determine
whether a certain cell has to be treated as fluid, in-
terface or empty cell. This algorithm, as well as
the one described in Section 5, requires the recon-
struction of incoming DFs at interface cells as free
surface boundary condition. The calculation of the
mass exchange with Eq. (9), however, is not neces-
sary. The treatment of cell changes, the most com-
plicated part, is also simplified, as this information
is now given by the position of the level set. After
performing stream and collide steps of the LBM,
the level set is advected in each time step. Unfortu-
nately, the LBM does not compute velocity values
outside of the fluid region, hence, these have to be
extrapolated using another fast marching pass dur-
ing each time step.

The distance of extrapolation can be reduced by
using a narrow band level set method, as described
in [11]. In this case, the level set is only propagated
in a region within a certain range around the sur-
face, hence the velocities only have to be extrapo-
lated within this region. This of course also reduces
the number of level set advection steps, that are nec-
essary for each time step. Still, for our current im-
plementation, the velocity extrapolation is the com-
putationally most expensive part.

8 Results

Our implementation includes a raytracing module
for the visualization of the fluid simulations, which
was also used to create the pictures shown here.

Figure 1 shows a simulation with six bubbles ris-
ing in a square container. This simulation was done
without the use of level sets, and demonstrates the
capabilities of the free surface LBM algorithm. As

666

Fluid

Gas

Gas
Gas

Φ<0

Φ>0

Φ=0

Representation as Level Set Φ

Fluid Topology

Figure 7: Discretization of the signed distance func-
tion for an exemplary surface - each cell stores the
(positive or negative) distance from its center to the
nearest point on the surface.

can be seen, the rising motion of the bubbles, and
their deformation due to the downward streaming of
the fluid around the surface, are properly captured.
The algorithm furthermore correctly deals with the
coalescence of bubbles.

For free surface simulations, the standard test
setup is the breaking dam problem. In a brick-
shaped domain an amount of resting fluid is initial-
ized, and the simulation starts when an imaginative
wall separating it from the rest of the domain is re-
moved. The gravity then accelerates the fluid, and
results in a swashing motion. For this problem, a
simulation comparing the two LBM variants can be
seen in Figure 6.

For the pictures to the left, the mass tracking al-
gorithm was used, while for the right column of pic-
tures the algorithm with level sets was used. For the
latter case the fluid surface is considerably smoother
than the other one, which exhibits steps at the mov-
ing front, and is not able to completely resolve the
thin fluid regions at the walls. The smooth surface
also results in improvements when calculating the
caustics, as steps in the surface result in unwanted
focussing of the light on the floor plane.

Another comparison of the two methods can be
found in Figure 8. Here a spherical drop is falling
down to the bottom of rectangular container. Here
drawbacks of our current level set implementation
can be seen, as the mass is not completely con-
served by the simulation using level sets, which cur-
rently does not yet use the hybrid level set method
described above. Figure 4 shows another setup that
demonstrates the complexity of the structures that
can develop from fluid simulations. Here the fluid
is especially turbulent, resulting in strong splashes

Figure 8: A drop of falling fluid. Again to the left
with, to the right without level sets.

at the four corners of the domain boundary. Ani-
mations for these test cases can also be downloaded
from [17].

9 Conclusion

We have presented two variants of free surface
Lattice-Boltzmann fluid simulations. The LBM free
surface model can correctly reproduce the behavior
of a fluid gas interface, and can incorporate bubble
coalescence and surface tension. The mass tracking
method ties directly into the LBM, and despite its
simplicity strictly conserves mass. Problems arise
when the curvature of smooth fluid regions is calcu-
lated, or thin layers of fluid are moving through the
grid. A new variant of this method uses level sets to
track the fluid surface, thus increasing its ability to
resolve thin fluid layers, and simplifying the calcu-
lation of surface normals and curvature. However,
additional complexity is required to extrapolate the
fluid velocities into the gas region, and to guarantee
mass conservation.

666

We will continue to evaluate the level set method
for LBM – especially the conservation of mass has
to be improved, e.g. by the hybrid particle level
set method. While the curvature calculation with
level sets is inexpensive compared to the geometric
approach, its accuracy needs to be tested.

10 Acknowledgements

This research is funded by the DFG Graduate Col-
lege GRK-2443-D Image Analysis and Synthesis.
Furthermore, we want to thank Thomas Pohl and
Carolin Körner, Michael Thies and Torsten Hof-
mann fromWTM Erlangen.

References

[1] P. Bhatnagar, E. Gross and M. Krook, “A
model for collision process in gases I: small
amplitude processes in charged and neutral
one-component systems”, Phys. Rev. E, Vol.
50, pp. 511-525, 1954

[2] J. Chen and N. da Vitoria Lobo, “Towards
interactive-rate simulations of fluids with
moving obstacles using Navier-Stokes equa-
tions.”, Graphical Models and Image Process-
ing 57, pp. 107-116

[3] S. Chen and G. Doolen, “Lattice Boltzmann
Method for Fluid Flows”, Annual Review of
Fluid Mechanics, 30, pp. 329-364, 1998

[4] D. Enright, R. Fedkiw, J. Ferziger and I.
Mitchell, “A Hybrid Particle Level Set Method
for Improved Interface Capturing”, Journal of
Comp. Phys. 183, pp. 83-116, 2002

[5] I. Ginzburg and K. Steiner, “A free-surface lat-
tice Boltzmann method for modelling the fill-
ing of expanding cavities by Bingham fluids”,
Phil. Trans. R. Soc. Lond. A, 360, pp. 453-
466, 2002

[6] C. Körner and R.F. Singer, “Numerical Simu-
lation of Foam Formation and Evolution with
Modified Cellular Automata”, Metal Foams
and Porous Metal Structures, MIT Publishing,
pp.91-96, 1999.

[7] Carolin Körner and Michael Thies, “Foam-
ing of Light Metals, Mechanisms and Numer-
ical Modeling”, to appear in Proceedings of
SIMTEC 2004.

[8] M. Krafczyk, P. Lehmann, O. Philippova, D.
Hänel and U. Lantermann, “Lattice Boltzmann

Simulations of complex Multi-Phase Flows”,
Springer Verlag, pp. 50-57, 2000

[9] W. Lorensen and H. Cline, “Marching Cubes:
A High Resolution 3D Surface Reconstruction
Algorithm”, Computer Graphics Vol. 21, No.
4, pp. 163-169, 1987.

[10] S. Osher and R. Fedkiw, “Level Set Meth-
ods and Dynamic Implicit Surfaces”, Springer
Verlag, 2003

[11] D. Adalsteinsson and J.A. Sethian, “A Fast
Level Set Method for Propagating Interfaces”,
Academic Press, Inc., 1995

[12] J.A. Sethian, “Level Set Methods and Fast
Marching Methods”, Cambridge University
Press, 1996

[13] C. W. Shu and S. Osher, “Efficient Implemen-
tation of Essentially Non-Oscillatory Shock
Capturing Schemes”, Journal of Comp. Phys.
83, pp. 32-78, 1988

[14] J. Stam, “Stable fluids”, in Proceedings of
SIGGRAPH 99, Annual Conference Series,
pp. 111-120

[15] Nils Thürey, “A single-phase free-surface
Lattice-Boltzmann Method”, Masters
thesis,IMMD10 University of Erlangen-
Nuremberg, 2003.

[16] Nils Thüerey, Thomas Pohl, Ulrich R̈ude,
MarkusÖchser, Torsten Hofmann and Carolin
Körner, “LBM Simulation and Visualization of
Free Surface Flows in 3D”, to appear in Pro-
ceedings of ICMMES 2004

[17] Nils Thürey, “Fluid Simulation with LBM”,
www.ntoken.com/fluid, 2004.

[18] Leonid Velikovich, Amitabh Varshney
“Adapting the Lattice-Boltzmann Model for
Efficient Airflow Modeling inside the View
Frustum”, Report of University of Maryland,
Computer Science Department, 2003.

[19] Wei Li, Zhe Fan, Xiaoming Wei, and
Arie Kaufman “GPU-Based Flow Simulation
with Complex Boundaries”, Technical Re-
port 031105, Computer Science Department,
SUNY at Stony Brook, 2003

666

Figure 9: A simulation of the breaking dam problem using the LBM free surface algorithm. The pictures of
the top row were generated using level sets for front tracking, while the lower row uses the mass tracking
method.

Figure 10: A square drop of fluid falls in a rectangular container. Again the upper row uses level sets, while
the lower one was calculated without them.

Figure 11: Pictures of a simulation of six rising bubbles that were simulated with the mass tracking method.

666

