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Abstract

We present a method to speed up and stabilize free surface simulations with the
lattice Boltzmann method (LBM). This is done by adaptively changing the param-
eterization of the simulation in a way that corresponds to a different size of the
simulation time step. This means that the Mach number changes as well, and re-
quires a rescaling of all distribution functions. Hence we only perform the rescaling
when the velocities in the simulation become too large or small. We will demonstrate
the effect of this procedure for two and three dimensional test cases. In addition to
a reduction of the necessary LBM steps, this method can also be used to stabilize
gravity driven simulations, where the maximum velocities are not known a priori.
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1 Introduction

A variety of applications require the simulation of a liquid with a free surface.
One example is the optimization of production processes like casting or the cre-
ation of metal foams involving the accurate tracking of a liquid gas interface.
Also for graphical applications the animation of liquids is still a challenge [1].
In both cases discretizations of the Navier-Stokes equations (NSE) are com-
monly used to simulate fluids. For the implementation described here we have
chosen the lattice Boltzmann method (LBM), which was derived from the lat-
tice gas methods and can be regarded as a first order explicit discretization
of the Boltzmann equation discretized in phase space. It is able to efficiently
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handle complex, dynamic geometries and topologies. However, especially in
the field of computer graphics LBM is rarely used to simulate free surfaces.
The boundary conditions for the free surface are relatively simple compared to
other approaches [4], and thus allow an efficient implementation. The method
we will present in the following can be used to speed up and stabilize flows
with highly varying velocities, such as gravity driven free surface flows. An
overview of the free surface LBM is given in Section 2, while in Section 3 the
implementation of adaptive time stepping is explained. Section 4 will demon-
strate the effect of the method for various test cases and problem sizes.

2 The Lattice Boltzmann Method

The LBM works on a (in our case equidistant) grid of cells, each of which
contains information about a fixed number of discrete velocities. For two-
dimensional simulations nine velocity directions are commonly used (D2Q9
model [9]), while for three dimensions, the D3Q19 model with nineteen veloci-
ties is the most common, and will also be used for the following examples. The
directions of the velocity vectors are shown in Figure 1. For a cell at position
x a particle distribution function (DF) fi(x, t) has to be stored as a floating-
point value for each velocity direction (i = 0..18). The direction vectors ei are
defined as e0 = (0, 0, 0), e1,2 = (±1, 0, 0), e3,4 = (0,±1, 0), e5,6 = (0, 0,±1),
e7..10 = (±1,±1, 0), e11..14 = (0,±1,±1) and e15..18 = (±1, 0,±1). The con-
served moments density ρ and mass flux j can be computed as

ρ =
18
∑

i=0

fi , j = ρu =
18
∑

i=0

fiei , (1)

where u is the fluid velocity. The basic algorithm proceeds in two steps –
the stream step and the collide step. As the size of a time step is usually
normalized to 1, the streaming step results in a movement of each DF to the
adjacent cell along its velocity vector, as shown in Figure 1. The collide step
then accounts for the collisions between the particles that occur in a real fluid
during their movement, by relaxing the DFs towards an equilibrium state. For
the BGK model [9] , the equilibrium DFs f eq

i are defined as

f eq
i (ρ,u) = wiρ

[

1 −
3

2
u · u + 3ei · u +

9

2
(ei · u)2

]

, (2)

where u and ρ are the macroscopic velocity and density, respectively, and wi

are weights that are given by the length of the velocity vector: w0 = 1/3 ,
w1..6 = 1/18 and w7..18 = 1/36. The value of the distribution function for the
next time step fi(x, t + ∆t) is calculated by:
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D3Q19D2Q9

Fig. 1. To the left the velocities of the D2Q9 and D3Q19 LBM models are shown,
on the right side the DFs of a LBM cell before and after the stream step can be
seen.

fi(x, t + ∆t) = (1 − ω)fi(x, t) + ωf eq
i

(

ρ(x, t),u(x, t)
)

, (3)

with the relaxation factor ω, that is set according to the viscosity of the fluid:

ω = 2/(6ν + 1) = 1/τ . (4)

Here ν is the kinematic viscosity of the fluid in lattice units. Hence, the equa-
tion for the time evolution is:

fi(x+ei∆t, t+∆t) − fi(x, t) = −∆t ω
[

fi(x, t) − f eq
i

(

ρ(x, t),u(x, t)
)

]

. (5)

This is known as the BGK lattice Boltzmann equation due to its approxima-
tion of the particle collisions with a single relaxation parameter. To enhance
the stability of the algorithm for higher Reynolds numbers other methods, e.g.
multiple relaxation time models [2, 5] could be used. External forces like grav-
ity can be applied by accelerating the fluid in each cell before the calculation
of the equilibrium distribution functions.

Thus for simulations with an acceleration force g Eq. 3 becomes

fi(x, t + ∆t) = (1 − ω)fi(x, t) + ωf eq
i

(

ρ(x, t),u(x, t) + g/ω
)

. (6)

We use the bounce-back boundary conditions for obstacles and at the domain
boundaries (here, this results in a zero normal and tangential velocity). Hence,
if the adjacent cell is an obstacle cell, the DFs are reflected at the cell boundary
during streaming.

For the simulation of a free surface, we use the boundary conditions described
in [7]. Figure 2 shows an example simulation of breaking dam test case sim-
ulated with the algorithm described below. The gas and fluid phase of a free
surface simulation require a distinction between cells that do not contain any
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Fig. 2. Several frames of a breaking dam simulation performed with the aglorithm
described in Section 2.

fluid (only gas), interface cells which are partially filled, and cells completely
filled with fluid. Fluid cells can be treated as described in Section 2, and no
computations are necessary for empty cells. However, all DFs which should
be streamed from empty cells need to be reconstructed for the interface cells
with

fI(x, t + 1) = (f eq
i (u, ρg) + f eq

I (u, ρg)) − fi(x, t) . (7)

Here fI is related to the anti-parallel lattice vector eI with eI = −ei. Note
that in this form the boundary conditions do not include any surface tension.
The gas density ρg prescribes the interface conditions for pressure at leading
order, where the atmospheric density is simply the reference density of the
LBM simulation. The velocity u required for the equilibrium DFs in Eq. 7 is
that of the fluid at time t, as the gas is assumed to have the same velocity
as the fluid close to the interface. Bubbles are treated by calculating their
volume in each time step, which is used together with the initial bubble mass
to calculate the gas density. A high gas density (ρg > 1) results in a pressure
force at the fluid interface pushing the fluid away, as both equilibrium DFs
in Eq. 7 are influenced by ρg. A lower pressure (ρg < 1), on the other hand,
applies a force towards the gas phase. To track the surface movement the mass
exchange with all neighboring fluid and interface cells needs to be computed
by subtracting the outgoing DFs from the incoming ones during streaming

m(x, t + ∆t) = m(x, t) +
18
∑

l=0

Υ(x + ei,x) (fI(x + ei, t) − fi(x, t)) , (8)

where m(x, t) denotes the mass of the cell at position x and time t, and ε(x, t)
is the fraction of the cell that is filled with fluid. The factor Υ(x + ei,x)
accounts for the area of fluid between two interface cells. It is calculated as

Υ(x + ei,x) =
ε(x + ei, t) + ε(x, t)

2
, (9)

if both cells at x + ei and x are interface cells, while it is equal to one if
one of them is a fluid cell. Note that m(x, t) can become negative. This is
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Fig. 3. Here several frames of the simulation setup for the second test case from
Section 4 can be seen. A drop of fluid falls into resting fluid in a square computational
domain. In this case the grid resolution is 2562.

handled by the cell conversion and does not cause the algorithm to produce
incorrect results – the algorithm still conserves mass up to machine precision.
Once interface cells become completely filled or empty – indicated by a mass
of zero or equal to the density, respectively – their type has to be changed
accordingly. This can also cause neighboring fluid or empty cells to be changed
to interface cells, since the layer of interface cells has to be closed. While the
higher order analysis of these boundary conditions is a work in progress, the
implementation details of the algorithm can be found in our companion paper
[6] or in [10].

3 Adaptive Mach Numbers and Time Steps

Simulation configurations like the one shown on the title page exhibit a highly
varying range of velocities. As the LBM intrinsically limits the maximum
velocity of a cell, a setup like this usually requires a time step that is sufficiently
small to assure that the largest occurring velocities remain valid during the
course of the simulation. To alleviate this restriction, we have implemented a
technique to adaptively modify the parameterization to change the time step
size. This also results in a change of the Mach number Ma = u/cs, as the
grid size and thus the speed of the information propagation (determined by
cs) stay fixed, but the velocities u are rescaled. However, it will be shown in
Section 4 that this does not disturb the simulation. Given a fluid viscosity ν
and an acceleration force g a maximum time step size ∆tmax can be calculated
by

∆tmax ≤

√

∆ρ · ∆x

|g|
. (10)
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Here ∆ρ is a dimensionless constant to limit the maximum density change per
time step. For simulation setups similar to those used here, we have chosen
∆ρ = 10−3. As this value controls the compressibility of the fluid, larger fluid
volumes may require smaller numbers. On the other end, the minimum size of
a time step is limited by the stability of the LBM. For a BGK model we have
chosen τmin ≥ 0.51. Given the kinematic viscosity of the fluid ν and τmin, the
lower limit of the time step can be computed as

∆tmin =
2τmin − 1

6ν
. (11)

During each LBM step, the current maximum velocity umax is computed. As
a threshold for the velocity we choose |uthresh| = 1/6 which is half of the speed
of sound chosen for D2Q9 and D3Q19. The speed of sound thus represents
the upper limit of the lattice velocity to simulate weakly compressible flow. If
umax exceeds this threshold during the course of the simulation, we perform the
following procedure to stabilize the simulation again. If the velocities become
too large, this will result in a smaller time step size, while for small umax we
change the parameters to have the simulation perform larger time steps. The
size of the new time step can the be determined by

∆tn = |uthresh|/|umax| . (12)

In the following, a subscript of o will denote values before the rescaling pro-
cedure, while n will denote values for the new parameterization. Hence, to is
the size of the time step previously used for the LBM. To account for the new
time step size, the hydrodynamic moments as well as the acceleration force
have to be rescaled by s = ∆tn/∆to:

ρn = (ρo − ρref)s + ρref , un = uos , gn = go s2 (13)

Here ρref denotes the current reference density of the simulation, which has
to be calculated from the total fluid volume V and the overall mass M as
ρref = V/M . V is calculated by the sum of all fluid fraction values ε (which
are equal to one for fluid cells), while M is computed as the sum of all cell
masses. Thus for interface cells m and for fluid cells ρ is used. The deviation
of the cell densities from the reference density needs to be rescaled, as the
changed force gn requires an adaption of the density gradient. This rescaling
furthermore changes the values of m and ε for interface cells:

mn = mo(ρo/ρn) , εn = mn/ρn (14)

Since the relaxation time depends on the size of the time step, the non-
equilibrium parts of the distribution functions have to be rescaled, similar
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Fig. 4. Effect of the parameter change for a drop falling 2.5 times its radius, com-
pared to a simulation without any parameter changes.

to the rescaling for simulations using differently refined grids as in [3] or [8]:

f ′

i = [f eq
i (ρo,uo) + (fi − f eq

i (ρo,uo)) sτ ] sfi
, with (15)

sfi
= f eq

i (ρn,un) / f eq
i (ρo,uo)

sτ = ∆tnτn / ∆toτo

Here the factor sτ corresponds to the non-equilibrium scaling factor from [3],
while the additional scaling by sfi

is necessary to account for the changes
of velocity and density. sτ is thus equal for all cells and lattice directions
i. The factor sfi

, on the other hand, depends on i and can be different for
each cell. The scaling by sfi

is required to make the DFs of the cell represent
the velocity un and deviation from the median density ρn required by the
new parameterization. Thus it is assumed that the non-equilibrium part is
proportional to the equilibrium part direction by direction.

Note that the steps described so far require roughly as many computations as
a collision step. Thus, we only perform the rescaling when |umax| is larger than
|uthresh| · ξ or smaller than |uthresh|/ξ, where ξ is used to control the amount of
time step changes. We use a value of ξ = 5/4. The range of parameterization
also depends on the range of valid time steps. If ∆tmax already requires a τ
near 0.51 there will be little room to choose smaller time step sizes. To prevent
the time step from being decreased right after it was enlarged, we furthermore
delay enlarging of the time step. This, in contrast to decreasing the time step
size, is uncritical, as it is ensured that no high velocities currently appear in the
simulation. Here a delay of four times the grid resolution in time steps yields
good results. As the time step is infrequently changed in comparison with the
number of LBM steps, it requires very little computational time (less than
1% for the presented simulations). The method can also be applied to flows
without a free surface or without forcing. However, depending on the problem
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Fig. 5. Results for the test case of Figure 3 in two dimensions.

the advantages might disappear, e.g. due to constantly high velocities. Thus,
the following chapter will present results for test cases where the method is
applicable.

4 Results

The correctness of the following simulations will be determined by comparing
the average deviation of the fluid fraction values ε for all cells. This effec-
tively compares the difference of the position of the free surface for two given
configurations. The values shown in Figure 4, 5 and 6 are thus computed as

1

ntotal

∑

x∈Ω

|εref(x) − ε(x)| , (16)

where εref are the fluid fraction values of a reference simulation, Ω is the size
of the domain ranging from 0 to 1 in each spatial dimension, and ntotal is the
total number of chosen points where we measure the fluid fraction deviation
at. For example Figure 4 was generated using points in 64 intervals along
each axis, thus using ntotal = 4096 points in total. If two configurations are
completely different, this deviation will be close to one, while values close to
zero indicate a similar shape of the fluid. We take the average value for all
measured points to compare simulations of different sizes.

A first two-dimensional test to validate our rescaling procedure is a falling
drop of radius 0.1 (the size of the computational domain being 1.0) falling for
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Fig. 6. Results for the test case of Figure 3 in three dimensions.

2.5 times its radius. During the course of this movement the parameterization
is changed 6 times (for a resolution of 482) to 9 times (for a resolution of 2562).
These simulations use a uthresh = 0.05, which causes more parameterization
changes than really necessary, and were compared to a simulation using the
same resolution with a fixed parameterization. In Figure 4 the results of these
experiments are shown. It can be seen that the results are almost independent
of the resolution. Furthermore, the shape of the drop is not disturbed by the
rescaling which is evident from the very small deviations, being usually less
than 0.001.

A more realistic test case is shown in Figure 3. Here a drop with radius 0.1
is falling into a resting fluid of height 0.25. The results for experiments with
various grid sizes in 2D can be seen on the left side of Figure 5. Here three
simulations with the grid size shown in the graph were compared to a simu-
lation with twice this resolution parameterized to run with a small time step.
One of the three simulations used for comparison is run with a large time step
(left bars), the next with adaptive time stepping (middle bars), while the last
simulation (right bars) uses the smallest time step used in the correspond-
ing simulation with adaptive time steps. Thus the left- and rightmost bars
for each test case use parameterizations according to the largest and smallest
time step sizes used during the course of the simulation for the middle bars.
The simulations with lattice resolution 642 were initially parameterized with
ω = 1.87, g = (0 , −5.34 · 10−4) running for approximately 1000 steps. For
the larger grid resolutions the parameters were scaled to keep the Reynolds
number constant (hence for the test cases with a 1282 resolution ω = 1.678).
As the graph shows, the parameterization changes for time step and Mach
number adaption yield the expected results lying close to the both extremes
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Fig. 7. A simulation of a falling drop with a grid resolution of 2403 requiring less
than 6800 steps, in contrast to more than 16000 that would have been necessary to
run the simulation with the smallest time step.

of parameterization.

The graph in Figure 6 shows results for running the previous test case ex-
tended to 3D. The only difference here is, that due to memory limitations
the reference simulation uses 1.5 times the shown grid resolution, instead of
the factor 2 for the 2D cases. Again the results with adaptive time steps lie
in the expected range. Note that these test cases were chosen to ensure that
even the initial large time step size remains stable. The method presented
here also allows the stabilization of simulations were the occurring velocities
cannot be determined from the start. In these cases the parameterization will
be automatically changed in order to stabilize the simulation, if the new value
for ω does not itself cause stability problems. The method can then save sig-
nificant amounts of computational time by reducing the number of necessary
LBM steps. As an example, the simulation shown in Figure 7 requires 6757
LBM steps with adaptive parameterization while running the simulation with
the smallest time step size would have required 16200 steps. Thus, using the
method presented here, this test case runs 2.4 times faster than without it.
While not all simulations will benefit this much, they will nut run slower using
the adaptive parameterization, as the computational cost for checking whether
to perform a parameterization change or not is negligible in comparison to the
cost of each LBM step.

5 Conclusions

We have presented a method to adaptively change the Mach number and pa-
rameterization of a LBM simulation to account for a change of the time step
size. The maximum velocity occurring in the simulation is used to trigger a
rescaling procedure similar to the rescaling of the non-equilibrium components
for grid refinement, additionally scaling the cell velocities and density devia-
tions. It was shown that this process does not disturb the free surface flow and
can yield significant speedups for simulations with varying velocities, such as
gravity driven free surface flows. It furthermore stabilizes and simplifies the
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parameterization for flows where maximum velocities cannot be determined
in advance.
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