
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG)

Lehrstuhl für Informatik 10 (Systemsimulation)

A single-phase free-surface Lattice Boltzmann Method

Nils Thürey

Diplomarbeit

2 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

A single-phase free-surface Lattice Boltzmann Method

Nils Thürey
Diplomarbeit

Aufgabensteller: Prof. Dr. Ulrich Rüde

Betreuer: Thomas Pohl

Bearbeitungszeitraum: 2002-12-01 bis 2003-06-02

4 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Erklärung:

Ich versichere, daß ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebe-
nen Quellen angefertigt habe und daß die Arbeit in gleicher oder ähnlicher Form noch keiner anderen
Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeich-
net.

Erlangen, den 13. Januar 2005 .

6 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Abstract 7

Abstract

A single-phase free-surface Lattice Boltzmann Method

In the past years, the Lattice Boltzmann Method (LBM) has become popular for many applications
in the field of computational fluid dynamics. Its simple update rules allow easy implementation
and optimizations like parallelization and blocking, which are especially interesting in the high
performance computing sector.

The LBM has been applied to metal foam simulation for two-dimensional problems in [Thies,
2000]. This thesis will present an expansion of this fluid model to 3D, as well as an alternative
method to calculate the surface tension. Metal foams are interesting for material sciences, as they
allow the production of light and stable structures with excellent physical properties. The process
of foaming is up to now not completely understood, and often based on trial and error. Hence, the
target is to use numerical simulation to gain understanding and optimize the necessary parameters of
the foaming process like temperature and gas concentration. This thesis will focus on the simulation
of the motion of the liquid metal phase.

The fluid solver presented here is capable of simulating a single fluid phase with a free surface,
including surface tension, bubbles and coalescence. In contrast to the standard multi-phase models
of [Gunstensen et al., 1991] and [Swift et al., 1996] it is not necessary to simulate the motion of
the gas phase, which overcomes restrictions in difference of the viscosity of the two phases, and
improves the computational time needed for the numerical simulation, as the gas volumes in the
foam do not require any additional computations. The forces at the fluid interface, gas pressure
and surface tension, are applied by reconstructing the missing information from the gas phase. For
surface tension, points on the fluid surface are calculated with the marching cubes algorithm and
used to retrieve an average curvature at the fluid-gas interface. As part of this thesis, the fluid
solver is tested and validated with standard problems like the breaking dam problem and rising
bubble problems.

8 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Zusammenfassung 9

Zusammenfassung

Eine Lattice Boltzmann Methode fuer einzelne Phasen mit

freien Oberflächen

In den letzten Jahren ist die Lattice Boltzmann Methode (LBM) im Bereich der Strömungssimu-
lation sehr populär geworden. Die einfachen Regeln des Algorithmus erlauben eine einfache Im-
plementierung und umfangreiche Optimierungen wie Paralellisierung und Blocking, was besonders
fuer den High-Performance Sektor wichtig ist.

Die LBM wurde erfolgreich für zweidimensionale Metallschaum-Simulationen in [Thies, 2000]
angewendet. In dieser Arbeit wird eine Erweiterung des dort vorgestellten Algorithmus auf 3D
implementiert, und gleichzeitig eine alternative Methode zur Berechnung der Oberflächenspan-
nung verwendet. Metallschäume sind in für die Werkstoffwissenschaftan aufgrund ihrer exzellenten
physikalischen Eigentschaften interessant. Die Produktion der Metallschäume ist momentan noch
nicht vollständig verstanden, und ist dadurch oft auf das Ausprobieren der geeigneten Parameter
bezüglich Temperatur und Gaskonzentration angewiesen. Es bietet sich darum an, numersiche Sim-
ulation einzusetzen um die Kontrollierbarkeit des Prozesses zu vergrössern. In dieser Arbeit liegt
der Schwerpunkt auf der Simulation der Bewegung des flüssigen Metalls.

Der hier vorgestellte Löser ist in der Lage eine Flüssigkeitsphase mit freier Oberfläche, Ober-
flächenspannung und Blasen mit Koaleszenz zu simulieren. Im Unterschied zu bekannten Mehrphasen-
Modellen, wie zum Beispiel in [Gunstensen et al., 1991] und [Swift et al., 1996], ist es bei dem hier
vorgestellten nicht nötig die Gasphase mit zu simulieren. Dadurch ergeben sich weniger Probleme
auch bei grösseren Viskositätsunterschieden der Gas- und Flüssigkeitsphase. Gleichzeitig wird viel
Rechenzeit eingespart, da, vor allem bei Schäumen, die Gas-Phase grosse Bereiche des Arbeitsge-
bietes einnimmt. Die an der Flüssigkeitsoberfläche wirkenden Kräfte, Druck und Oberflächenspan-
nung, werden über eine Rekonstruktion der Informationen aus der Gas-Phase angewandt. Für die
Oberflächenspannung werden mithilfe des Marching-Cubes Algorithmus Punkte an der Flüssigkeit-
soberfläche berechnet, welche zur Berechnung einer durchschnittlichen Krümmung an der Flüssigkeits-
Gas Grenze herangezogen werden. Des weiteren werden im Rahmen dieser Arbeit Validierungen mit
Standardproblemen wie dem Breaking-Dam Problem und Simulationen von aufsteigenden Blasen
vorgenommen.

10 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

CONTENTS i

Contents

1 Introduction 1

1.1 The Lattice Boltzmann Method . 1

1.2 Metal foams . 2

1.3 Structure of this thesis . 2

2 LBM for computer scientists 5

2.1 The D3Q19 lattice . 5

2.2 The code . 8

2.3 Some improvements . 8

2.3.1 Boundary conditions . 8

2.3.2 External forces . 10

2.4 Conclusion . 10

3 Mathematical and physical background 11

3.1 The Navier-Stokes equations . 11

3.2 The Boltzmann Equation . 13

3.3 Derivation of the Lattice Boltzmann equation . 15

3.3.1 Time discretization . 15

3.3.2 Approximation of the equilibrium distribution 16

3.3.3 Discretization of the velocities . 17

3.4 Chapman-Enskog Expansion . 20

3.5 Further enhancements . 21

4 The model 23

4.1 The single-phase free-surface model . 23

4.2 Bubbles . 24

4.3 Surface tension . 25

4.4 Gravity . 26

4.5 LBM Parametrization . 26

4.5.1 Parameter calculation . 26

4.5.2 An example problem . 27

4.5.3 Problem scales . 28

5 Implementation 29

5.1 Performance considerations . 29

5.2 Multiphase implementation . 30

5.3 Surface reconstruction . 32

5.4 Problems . 33

ii A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

6 Results 37

6.1 Free surface . 37

6.2 Falling drops . 37

6.3 Rising bubbles . 38

6.4 More drops and breaking dams . 38

6.5 Six rising bubbles . 38

6.6 A validation experiment . 38

6.7 Performance measurements . 39

7 Visualization 47

7.1 Real-time visualization with OpenGL . 47

7.2 Realistic visualization with raytracing . 47

7.3 Reflection, Refraction and Fresnel . 48

7.4 Soft shadows . 49

7.5 Caustics with photon mapping . 49

8 Conclusions 53

9 Acknowledgements 55

Appendix 56

List of Figures . 58

Bibliography . 59

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Fluid simulations with a free surface are needed in a variety of engineering and environmental
applications that range from mold filling, bubble and wave dynamics to the simulation of ocean-
atmosphere interactions. This thesis will present a three-dimensional free surface fluid simulation
based on the Lattice Boltzmann Method. The targeted application, that will be described in this
chapter, is the simulation of metal foams. The difference to other multi-phase methods is that the
gas phase only has negligible influence on the liquid metal phase and is therefore not simulated as
a fluid. This significantly reduces the computational complexity of the method. This single-phase
method was presented in [Arnold et al., 2000] and is successfully used to simulate metal foams in
two dimensions.

This thesis will focus on the three-dimensional fluid solver, that will be used to simulate the
movement of the liquid metal phase, in order to later-on provide the tool for metal foam simulations.
The gas diffusion and solidification process are not taken into consideration in the scope of this
thesis.

1.1 The Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) emerged from the lattice gas cellular automata (LGCA).
The first experiments with fluid simulations using cellular automata are described in [Hardy et al.,
1976]. These simulations, however, were not corresponding to the Navier-Stokes equations. It
took ten years, until in [Frisch et al., 1986] the importance of the lattice symmetry was discovered.
This resulted in increased research activities, one of which was to replace the boolean particle
representations of the LGCA by particle distribution functions. This reduced the problem of noise
in the LGCA models. Other enhancements were proposed for the collision operator. The Bhatnagar-
Gross-Krook approximation was introduced to the LBM by [Quian et al., 1992; Chen et al., 1992].
This model is also known as the lattice-BGK model (LBGK), and was used for the implementation
of this thesis.

The idea of cellular automata is quite different from the usual representation of problems using
partial differential equations (PDE’s). While these have to be discretized, usually resulting in a

Figure 1.1: Three samples of metal foams produced at the WTM in Erlangen, the photos were
taken by Michael Thies.

2 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

linear system of equations that can be numerically solved, cellular automata model a problem with
a set of equal cells. All cells are treated with the same rules, the complex behavior results from
interactions of the cells with their neighborhood. One of the most popular is Conway’s game of
life, which models the development of a population. The implementation of cellular automata in
a computer program is usually straightforward, as they are based on regular cells with a local
neighborhood and discrete values. These are also the benefits of using LBM as a fluid simulation
method – the implementation is relatively easy and efficient. Furthermore it allows the application of
many optimization and paralellization techniques known from other numerical algorithms, resulting
in high-performance implementations (e.g. [Zeiser et al., 2002]). The LBM has been validated for
a variety of applications, and is especially well suited for complex geometries (such as foams), due
to the simple handling of boundary conditions.

1.2 Metal foams

Metal foams are interesting for material sciences due to their combination of very low density and
excellent mechanical, thermal and acoustic properties, which makes them applicable to automotive
lightweight constructions, for example. However the production process is still not completely
understood, resulting in both high costs and many rejects. The resulting metal foams often have
inhomogeneities with strong variations in pore structure and sizes. The resulting metal foams
therefore do not have the desired physical properties. The successful production of new materials,
such as metal foams, requires a high level of understanding for the process. Thus, numerical
simulation can be used as a tool to increase the control of the process, ensure reproducibility and
furthermore gain understanding of the production process. This is the target of the FreeWIHR
project. Due to the high computational complexity of metal foam simulation in three dimensions
the Hitachi SR-8000 F1 at the Leibniz-Rechenzentrum in Munich will be used.

The foaming process that is described in [Körner and Singer, 1999] uses aluminum powder mixed
with (TiH2) as foaming agent. This composite is compacted and foamed by heating it above the
melting temperature. The foaming agent is split up, and the Hydrogen is released into the liquid
aluminium where it diffuses to the bubble nuclei that are already present in the material. The
pressure in the bubbles increases, leading to an expansion of the foam due to the growing bubble
volumes. The expansion of the foam continues until more gas is lost to the environment than is
provided by the foaming agent. This loss occurs due to diffusion and bursting bubbles at the foam
surface. Different time steps of a two dimensional simulation of this process is shown in Figure 1.2.
The simulation of this foaming process in two dimensions has been described in [Körner and Singer,
2000; Körner et al., 2000].

1.3 Structure of this thesis

This thesis is structured to first give a short introduction to the implementation of Lattice Boltz-
mann Methods, targeted to readers that are not deeply familiar with fluid simulations. Chapter 3
will then describe the underlying math and physics, deriving the Lattice Boltzmann equation from

Figure 1.2: Several time steps of an animation from [Arnold et al., 2000]. A metal foam evolves in
a container with an horizontal obstacle.

CHAPTER 1. INTRODUCTION 3

an arbitrary kinetic equation, and showing its correspondence to the Navier-Stokes equations. The
next chapter will describe the model used in this thesis in more detail, the implementation of which
is explained in Chapter 5. The results will be evaluated in Chapter 6. Standard problems like a
breaking dam and falling drops were tested, as well as several problems with rising bubbles targeted
to the suitability for foaming simulations. This thesis concludes with notes on the visualization tech-
niques used, and an overview of future enhancements that will be necessary to realistically simulate
metal foams in three dimensions.

4 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

CHAPTER 2. LBM FOR COMPUTER SCIENTISTS 5

Chapter 2

LBM for computer scientists

The aim of this chapter is to give an overview of the Lattice Boltzmann Method and its implemen-
tation, which is important for the next chapter, where the physical and mathematical basics will
be explained.

2.1 The D3Q19 lattice

Lattice Boltzmann Methods, as the name suggests, work on a given lattice. Depending on the field
of application, different lattices can be used. These are named DXQY , where X is the number of
dimensions, 3 in this case, and Y determines the number of distinct lattice velocities. LBM can be
described as a type of cellular automaton, which means that the fluid is modeled by many cells of
the same type. All cells are updated each time step by simple rules, that take into account the state
of the surrounding cells. The complex behavior of the automaton emerges from the interaction of
the cells, and not, for example, by describing system properties as functions of space and time.

The LBM models an incompressible fluid by particles, that are allowed to move only along the
lattice velocity vectors. A single cell of the D3Q19 model is depicted in Figure 2.1. Each side of the
cell has length 1, so the volume of a cell is 1, too. The lattice velocities are shown and numbered.
They point from the cell center to each face of the surrounding cube, and to the midpoints of all
cube edges, but not to the eight corners. There is also a LBM model that includes lattice vectors
to the corners, the D3Q27 model, but as it does not improve stability in this case and increases
memory requirements, D3Q19 is used here. For the simulation, all cells have to store the number of
particles that move along each of the lattice vectors, the particle distribution functions. They are
usually called fi where the values for i correspond to the numbers of the lattice vectors. If cells of
this type are arranged in a three-dimensional grid, each lattice vector points to a neighboring cell,
that has a particle distribution function into the inverse direction. Note, that the vector with the
number 0 has length zero, and amounts for particles resting in this cell. These particles are not
moving anywhere in the next time step, but some of them may be accelerated due to collisions with
other particles - so the amount of resting particles can change.

From the particle distribution functions two important physical values can be calculated. By
summing up all 19 distribution functions the density for the volume of this cell can be calculated,
assuming that all particles have the same mass of 1. As the distribution functions contain the
amount of particles moving in a certain direction for each cell, the sum of all particles in a single
cell is its density (the mass per volume). Another important information for each cell is the speed
and overall direction in which the particles of one cell move. For this the momentum density needs to
be calculated. It is again the sum of all particle distribution functions, but each distribution function
is first multiplied by the lattice vector. Thus, the particle distribution function 0 is multiplied with
(0, 0, 0)T , which always amounts to zero, distribution function f1 is multiplied by (1, 0, 0)T and
added to distribution function f2 times (−1, 0, 0)T and so on. This results in a three-dimensional
vector, that is scaled by the density, as the particle distribution functions contain a total amount
of particles. So, simply dividing the momentum density by the density, calculated as described
above, yields the velocity vector for a cell. For simplicity the density is usually set to one in the
beginning of a simulation. While the LBM is used to simulate incompressible fluids, meaning that

6 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

D3Q19 lattice cell D2Q9 lattice cell

Resting particles

Distribution functions
of length 1

Distribution functions
of length SQRT(2)

1

2

6 4

5

73
8

3

16

9

15

14

2

13

7

12

18

11

184

17 5

10

6

x

y
z

Figure 2.1: The 19 distinct velocities of the D3Q19 model point to every face and edge of a cube
around the cell, except for the 8 corners. For comparison the D2Q9 model is shown to the right;
both models have speeds of length 0, 1 and

√
2.

the density is constant everywhere in the fluid, this constraint is relaxed during a LBM simulation.
In a simulation one will usually encounter density differences, but for reasonable parameters the
overall behavior will equal that of an incompressible fluid.

The simulation process consists of two steps, that are repeated for each time step. One is the
stream step, in which the actual movement of the particles throughout the grid is performed, the
other accounts for the collisions that occur during this movement, and thus is called the collide step.
For simplicity, the size of a cell, the length of a timestep and the initial density will be normalized
to 1 and will not be included in the following formulas. For a more general description please refer
to Chapter 3.

The stream step consists only of copying operations, as shown in Figure 2.2. For each cell, all
distribution functions are copied to the adjacent cell in the direction of the lattice vector. Hence, for
the cell with the coordinates [i, j, k] the distribution function for the lattice vector pointing upwards
is copied to the upward distribution function of cell [i, j + 1, k]. As the lattice vector 0 does not
point anywhere, its particle distribution function is not changed in the stream step. In practice,
when writing a program that performs the streaming, the easiest way to implement this behavior
is to use two different grids, and copy the distribution function from one grid to the other. This is
necessary to prevent any overwriting of distribution functions that are needed for the streaming of
another cell.

The collide step is a bit more complicated. Performing stream steps would just result in the
distribution functions moving through the grid. The velocities and densities of the cells would

four cells at
timestep t after collision

four cells at
timestep t+1 after streaming

a single cell at
timestep t after collision

a single cell at
timestep t+1 after

streaming

b)a)

Figure 2.2: Each two pictures show the particle distribution functions of a D2Q9 LBM grid before
and after streaming. To the left the distribution functions of a single cell can be seen, while the
right pictures show four different LBM cells.

CHAPTER 2. LBM FOR COMPUTER SCIENTISTS 7

distribution functions
after streaming

local equilibrium
distribution functions

distribution functions
after collision

velocity tau weighting
with τ=1.5

Figure 2.3: During the collide step the distribution functions from the stream step are used to
calculate the velocity in each cell, which is necessary for the local equilibrium distribution functions.
Thse are weighted with the parameter τ to yield the distribution functions for the next stream step.

change, with no further interaction. However, in a real fluid, the particles are constantly colliding,
scattering other particles into different directions and due to their chaotic movement influencing
adjacent layers of fluid. The collide step does not change the density or velocity of a cell, it only
changes the distribution of the particles for all particle distribution functions.

Consider, for example, a cell [i, j, k] where the fluid moves along the positive x-axis. It will not
lose any particles during collision, but the movement will be scattered to other lattice velocities
that point in direction of the positive x-axis. The ones pointing into the opposite directions will
become smaller. In the next stream step, neighboring cells with x coordinate i + 1 will receive a
slightly larger particle distribution function from cell [i, j, k], while cell at i− 1 will receive slightly
smaller ones. In the collide step several parameters are necessary, for which a formal justification
will be given in Chapter 3. The relaxation time ω, that can have values in the range of 0 and 2,
determines the viscosity of the fluid. For small values (< 1) the fluid will behave more like honey,
while values close to 2 will result in very turbulent and chaotic behavior (resembling fluids like
water). The density of the cell will be denoted by ρ while the velocity vector is ~u = (u1, u2, u3)

T .
The lattice velocity vectors from Figure 2.1 are ~e0..18, each one having a weight wi. The derivation
of these weights is explained in more detail in Chapter 3. For colliding the equilibrium distribution
function has to be calculated from density and velocity first :

f
(0)
i = wi

[

ρ − 3

2
(~u)2 + 3(~ei · ~u) +

9

2
(~ei · ~u)2

]

(2.1)

with wi = 1
3 for i = 0, wi = 1

18 for i = 1..6 and wi = 1
36 for the remaining i = 7..18. This formula can

be derived by a Taylor expansion of the Maxwell distribution. The three scalar products between
the velocity and lattice vectors can be calculated easily. They need to be scaled accordingly and
then summed up to be adjusted by the according weight and density. Now, depending on ω the fluid
reaches this equilibrium faster or slower. The new particle distribution functions f ′

i are calculated
with:

f ′

i = (1 − ω)fi + ωf
(0)
i (2.2)

These f ′

i ’s are then stored in the corresponding cell. When all cells have been collided the next
stream step can be performed.

The streaming and collide step can be combined to one formula, which is often found in literature
about LBM:

fi(~x + ~ei4t, t + 4t) − fi(~x, t) = −1

τ

(

fi − f
(0)
i

)

(2.3)

As the time step 4t was set to 1 in the other formulas, it did not yet appear. The left hand side of
this equations accounts for the stream step, as ~x + ~ei directly points to the distribution function of
another cell. The right hand side can be recognized as the combination of the current distribution
function and the local equilibrium.

8 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

2.2 The code

The LBM described in Section 2.1 can be directly transformed into a program. This can be seen in
Algorithm 2.1. The code is written in a pseudo-code similar to C. In Lines 3 to 9 the variables are
declared. As C does not allow multidimensional arrays of variable size, the size of the computational
domain is set with a macro. The variables from Line 5 on allow the handling of the particle
distribution functions for each cell in a loop. All these loops could be unrolled and optimized, for
example by removing multiplications with ex-values, that are known to be zero.

First all cells are initialized with the equilibrium distribution functions, and thus are at rest.
Without any external forces, all cells will remain unchanged. The stream step from Line 25 on
copies the distribution functions from the old grid to the current one. A common mistake is to
use the cell in the direction of the current distribution function, e.g. ex[l], instead of the inverse
direction (which is ex[inv] in Algorithm 2.1 Line 31, where inv is the opposite direction of l).

The collide step finally directly computes the Equations 2.1 and 2.2 and stores these values
again. After this, the grids are swapped, so the next stream step will operate on the collided values.

2.3 Some improvements

Although the program described in Section 2.2 performs a full lattice boltzmann simulation, if it
is used to perform a simulation, nothing will change over time. This section will describe some
extensions for boundary conditions and external forces.

2.3.1 Boundary conditions

In the current version of the code, the boundary conditions are not specifically handled – they do
not conserve mass, and just insert equilibrium distribution functions into the fluid. The standard
boundary conditions for LBM simulations are no-slip walls, i.e. close to the boundary the fluid
does not move at all. Hence, each Lattice Boltzmann cell next to a boundary should have the same
amount of particles moving into the boundary as moving into the opposite direction. This will
result in a zero velocity, and can be imagined as reflecting the particle distribution functions at the
boundary. The reflection process is shown in Figure 2.4, left, for the no-slip case. To the right,
however, the free-slip case is illustrated, for which only the velocities normal to the boundary are
reflected.

For the implementation this means, that boundary and fluid cells need to be distinguished. A
flag array has to be introduced and initialized to declare all boundary cells as ”no-slip” and all
inner cells as ”fluid”. The real handling of the boundary cells would happen in the streaming loop
at line 31 of Algorithm 2.1. Here the flag array had to be checked, and if the neighboring cell is a
boundary cell, the opposite distribution function from the current cell would be taken. The code
fragment to replace line 31 is shown in Algorithm 2.2.

a) b)

cell near no-slip boundary
before streaming

cell near no-slip boundary
after streaming

cell near free-slip
boundary before streaming

cell near free-slip
boundary after streaming

Figure 2.4: No-slip obstacle cells directly reflect the incoming distribution functions. For free-
slip boundary conditions, the distribution functions are reflected along the normal direction of the
boundary.

CHAPTER 2. LBM FOR COMPUTER SCIENTISTS 9

Algorithm 2.1 D3Q19 LBM
1: // Declare variables and initialize...
2: #define SIZE 50;
3: double ω = 1.9; int steps = 100; int current = 0, other = 1;
4: double cells[2][SIZE][SIZE][SIZE][19];
5: const double w[19] = { 1

3
, 1

18
, 1

18
, 1

18
, 1

18
, 1

18
, 1

18
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
, 1

36
};

6: const int ex[19] = {0, 0, 0, 1,−1, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1};
7: const int ey [19] = {0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1, 0, 0, 0, 0};
8: const int ez [19] = {0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1};
9: const int finv [19] = {0, 2, 1, 4, 3, 6, 5, 10, 9, 8, 7, 14, 13, 12, 11, 18, 17, 16, 15};

10:
11: // All cells are resting first
12: for i = 0; i < SIZE do

13: for j = 0; j < SIZE do

14: for k = 0; k < SIZE do

15: for l = 0; l < 19 do

16: cells[0][i][j][k][l] = w[l];
17: cells[1][i][j][k][l] = w[l];
18: end for

19: end for

20: end for

21: end for

22:
23: // Start simulation
24: for s = 0; s < steps do

25: // Stream from the other to the current grid...
26: for i = 1; i < SIZE − 1 do

27: for j = 1; j < SIZE − 1 do

28: for k = 1; k < SIZE − 1 do

29: for l = 0; l < 19 do

30: int inv = finv [l];
31: cells[current][i][j][k][l] = cells[other][i + ex[inv]][j + ey [inv]][k + ez [inv]][l];
32: end for

33: end for

34: end for

35: end for

36: // Collide...
37: for i = 1; i < SIZE − 1 do

38: for j = 1; j < SIZE − 1 do

39: for k = 1; k < SIZE − 1 do

40: // Calculate density and velocity
41: double ρ = 0.0, ux = 0.0, uy = 0.0, uz = 0.0;
42: for l = 0; l < 19 do

43: double fi = cells[current][i][j][k][l];
44: ρ = ρ + fi; ux = ux + fi ∗ ex[l]; uy = uy + fi ∗ ey [l]; uz = uz + fi ∗ ez [l];
45: end for

46: // Perform collision
47: for l = 0; l < 19 do

48: double f0 = w[l] ∗ ρ ∗ (1.0 −
49: 3.0/2.0 ∗ (ux ∗ ux + uy ∗ uy + uz ∗ uz) +
50: 3.0 ∗ (ex[l] ∗ ux + ey [l] ∗ uy + ez [l] ∗ uz) +
51: 9.0/2.0 ∗ (ex[l] ∗ ux + ey [l] ∗ uy + ez [l] ∗ uz)2);
52: cells[current][i][j][k][l] = (1 − ω) ∗ cells[current][i][j][k][l] + ω ∗ f0;
53: end for

54: end for

55: end for

56: end for

57: // We’re done for one time step, swap the grids...
58: other = current; current = 1 − current;
59: end for// Simulation is done!

10 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Algorithm 2.2 No-slip boundary condition handling

1: // Check flag array
2: if flags[i + ex[inv]][j + ey[inv]][k + ez[inv]] == NOSLIP then

3: // Boundary cell
4: cells[current][i][j][k][l] = cells[current][i][j][k][inv];
5: else

6: // Normal fluid cell
7: cells[current][i][j][k][l] = cells[other][i + ex[inv]][j + ey[inv]][k + ez[inv]][l];
8: end if

2.3.2 External forces

In the current version of the code, constant forces like gravity do not exist. To introduce these, a
force can be applied to all fluid cells. The only necessary change would be to insert a statement
into Algorithm 2.1 after line 45 and add an acceleration to the velocity vector ~u. For example
”uy− = 0.01;” would result in a force along the negative y-axis, corresponding to an acceleration
vector of (0,−0.01, 0)T . When the simulation is started now, the fluid will be compressed by the
external force. After some time the fluid will be at rest again and a density gradient will be visible.
For the example above, the density at the bottom of the domain will be higher than the density at
the top.

The standard test problem for two-dimensional fluid solvers is the lid-driven cavity. It consists
of a rectangular domain filled with fluid and no-slip boundary conditions at the sides. One of the
walls is moving along the domain, accelerating the fluid – in Figure 2.5 it is the upper wall. After
some time, a vortex in the middle of the domain is usually visible, accompanied by smaller vortices
in the corners which rotate in the opposite direction of the center vortex. This test problem can
be directly transferred to 3D. It can even be experienced in real life – imagine sitting in a court
yard, with wind moving the clouds into a certain direction above you. When small objects like
leaves are thrown into the air at the bottom of the court yard, these will move in the opposite
direction of the clouds. For the implementation of a lid driven cavity, a third type of cells called
accelerator cells has to be introduced. The velocity in these cells will be set to a fixed value, e.g.
(0.01, 0, 0)T , and the density is set to one. This is done instead of the usual computation of density
and velocity in the collide step. Afterwards the cells are collided like standard fluid cells by relaxing
the particle distribution functions with the local equilibrium distribution. Typically the fluid cells
with y = (SIZE − 2) will be initialized as accelerator cells, so the domain will be surrounded by
no-slip boundary cells, and the topmost fluid layer will have a fixed velocity. The disadvantage of
this simple implementation is that it does not conserve mass, as the density of the accelerator cells
is always one, but for testing purposes this error is usually negligible.

2.4 Conclusion

This chapter has shown that the implementation of the LBM is relatively easy. The program
discussed here is capable of a complete Navier-Stokes compliant fluid simulation, including external
forces and complex boundaries. By setting selected inner cells to be no-slip obstacles, complex
geometries can be approximated easily. Still, the nature of the LBM allows parallelization of the
algorithm and efficient implementation.

Figure 2.5: Four time steps from a two-dimensional lid driven cavity simulation.

CHAPTER 3. MATHEMATICAL AND PHYSICAL BACKGROUND 11

Chapter 3

Mathematical and physical

background

This chapter will shortly explain the basics of the Boltzmann equation, the derivation of the Lattice
Boltzmann equation and the connection to the Navier-Stokes equations. Furthermore an overview
of some basic properties of fluids will be given.

3.1 The Navier-Stokes equations

The origins of the nowadays established Navier-Stokes equations reach back to Isaac Newton, who
around 1700 formulated the basic equations for the theoretical description of fluids. These were
used by L. Euler half a century later to develop the basic equations for momentum conservation and
pressure. Amongst others, Louis M. H. Navier continued to work on the fluid mechanic equations
at the end of the 18th century, as did Georg G. Stokes several years later. He was one of the first
to analytically solve fluid problems for viscous media. The Navier-Stokes equations could not be
practically used until in the middle of the 20th century the numerical methods were developed, that
are necessary to solve the resulting equations.

One of the most important aspects for a fluid mechanical problem is the conservation of mass M ,
which has to remain constant for the fluid system. For a fluid in a container the domain boundaries
are obvious, but even for more complex systems, boundaries in which the total mass has to remain
constant can usually be found. The equation for mass conservation – the continuity equation — can
be derived by bringing a mass conservation law in Lagrangian variables (considering a fluid element
with a given position, velocity and constant mass, see Figure 3.1) into Eulerian form. Hence, the
mass conservation will be described by continuous variables, and not variables bound to a certain
fluid element. For compressible fluids the continuity equation has the following form:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (3.1)

Note that the second partial derivative is written in Einstein summation convention, meaning that
the i subscript appearing twice denotes a sum over all possible values. In this case it is a sum over
all three dimensions of ~u and ~x. The continuity equation is used together with the Navier-Stokes
equations to prevent any loss of mass.

The Navier-Stokes equations themselves can be derived by applying Newton’s second law to
a fluid element, hence, choosing a Lagrangian formulation. In Eulerian form, these momentum
equations are:

ρ

(
∂uj

∂t
+ ui

∂uj

∂xi

)

︸ ︷︷ ︸

advection

+
∂P

∂xj
︸ ︷︷ ︸

pressure

+
∂τij

∂xi
︸ ︷︷ ︸

momentum

= ρgj , j = 1, 2, 3 (3.2)

Three parts of this equation can be distinguished. The first part of the equation is responsible for
mass forces like advection. The partial derivatives of the pressure P are surface forces acting upon
the fluid. The third, and most complicated part, contains the tensor τij , and introduces momentum

12 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

m1

m2

m3

m4

Eulerian description Langrangian description

ρ(x1,y2)

ρ(x1,y1)

ρ(x2,y2)

ρ(x2,y1) ρ(x3,y1)

ρ(x3,y2)

ρ(x1,y3) ρ(x2,y3) ρ(x3,y3)

a) b)

y y

xx

Figure 3.1: This picture shows the difference of a Lagrangian (to the left) and a Eulerian description
(to the right). The first case considers fluid elements with certain properties such as mass and
velocity, whereas the Eulerian description consists of a continuous field of values for the density and
velocity.

effects due to molecule movement. Imagine a cubic fluid element, with molecules “jumping” in and
out at all borders due to the natural Brownian movement of the molecules. Even molecules moving
in the same direction with different velocities, can move perpendicularly into an adjacent element,
and influence it. Thus τij accounts for the diffusion of the velocities, separately for each component
in all three directions. This effect is similar to a friction between the fluid layers, but is in reality
caused by the molecule exchange described above [Durst, 2002].

For Newtonian fluids (i.e., the viscosity is independent of the shear rate), τij can be computed
as follows:

τij = −µ

(
∂uj

∂xi
+

∂ui

∂xj

)

+
2

3
δijµ

∂uk

∂xk
(3.3)

In this equation, µ denotes the dynamic shear viscosity, a value depending on the physical properties
of the fluid. The Kronecker symbol denotes the tensor where δij = 1 for i = j and δij = 0
otherwise. As the τij can be computed with Equation (3.3), this leaves five unknown variables in
four Equations (3.1), (3.2). However, for incompressible (ρ = const), Newtonian (µ = const) and

energy conserving fluids (∂2ui

∂xj∂xi
= 0) the resulting four equations are:

∂ui

∂xi
= 0 (continuity equation) (3.4)

ρ

(
∂uj

∂t
+ ui

∂uj

∂xi

)

+
∂P

∂xj
= µ

∂2uj

∂x2
i

+ ρgi (Navier-Stokes equations) (3.5)

With adequate initial and boundary conditions, these equations can be discretized, using fi-
nite differences or finite volumes, and solved using numerical algorithms such as Gauss-Seidel or
multigrid. For example, a C implementation for a finite-difference discretization using explicit time
stepping is given in [Griebel et al., 1988].

In fluid mechanics these equations are usually treated in a dimensionless way. This is valid as
fluids behave similar at different size and time scales. The most important value for the character-
ization of a problem is the Reynolds number R. It is dimensionless and can be calculated in the
following way:

R =
ρ ~U L

ν
(3.6)

where ρ is the fluid density, ~U the macroscopic flow speed and L the characteristic length or distance
of the problem. Thus, a fluid with a given velocity and viscosity behaves similar to one with a lower

CHAPTER 3. MATHEMATICAL AND PHYSICAL BACKGROUND 13

velocity and smaller viscosity. Or two problems with the same fluids, and viscosities, respectively,
are comparable when the flow speed is increased and the characteristic length is decreased. For
example, in order to measure the flow around an aerodynamic body, this can be performed with a
smaller model and increased flow speed in a wind-tunnel.

3.2 The Boltzmann Equation

The Boltzmann equation is known since 1872, named after the Austrian scientist Ludwig Boltzmann.
It is part of the classical statistical physics, and describes the behavior of a gas on the microscopic
scale.

The kinetic theory of gases deals with the description of gas states on the molecular level
[Frohn, 1979]. It introduces a function to describe the state of the gas by considering the position
and velocity of each molecule in the gas. In a three-dimensional space both require three values,
hence a molecule can be described by the six values (x1, x2, x3, ξx, ξy, ξz) where (x1, x2, x3) = ~x is

the position, and (ξx, ξy, ξz) = ~ξ is the velocity of the molecule. A gas with N molecules can then
be described by N points in the six-dimensional space (usually called the µ-space) for position and
velocity by specifying the six values for each molecule. Since a typical gas like air contains about
2.7 · 1019 molecules per cm3, it is at the time of this writing not possible to successfully perform
simulations at this level of detail. The required memory capacity would exceed those of current
machines, and even small uncertainties in the initialization would lead to dynamical instabilities.
To handle the molecular description the kinetic theory of gases defines a function for a volume
d~xd~ξ at (x1, x2, x3, ξx, ξy, ξz) in µ-space describing the density of the gas. Let dN be the number
of points in this volume (all molecules with position and velocity within the specified range), then

f(~x, ~ξ) =
dN

d~xd~ξ
(3.7)

is the molecular velocity distribution function. Integrating this function over all possible values
for position and velocity would yield N , the total number of molecules. f now only includes all
particles in an interval around x that move in the same direction. This function is a fundamental
value in the Boltzmann equation. The following three approximations are necessary to derive the
Boltzmann equation:

1. Particle collisions are only considered between two particles. In this form it restricts the
equation to diluted gases, where it can be assumed that in each collision only two particles
are involved.

2. The particles are point-like and structureless. Hence, it is assumed, that their velocities are
not correlated before and after the collision.

3. The third approximation is, that the collision dynamics are instantaneous and not influenced
by an external force (which is equivalent to a short-range potential for the interaction).

The second and third assumption need to be made, as strictly speaking the interaction potential is
infinite and all particles are constantly influencing each other, but their strength decreases quickly
with respect to the distance. So it can be assumed that the region of influence is just in a very short
range around the particle, and two particles collide when their influence regions touch each other.
In effect, nearly all of the time, the considered particles move around only affected by an external
force, the only interaction being a binary collision, that changes the momentum and direction of
the colliding particles only. This collision process between two particles is considered instantaneous,
and as such not affected by any external forces.

Including an external force g, the Boltzmann equation for f can be written as:

∂f

∂t
+ ~ξ · ∂f

∂~x
+ ~g · ∂f

∂~ξ
= Ω(f) (3.8)

Here the left hand side describes the overall motion of the molecules with the microscopic velocity
~ξ through the force field that is given by ~g at ~x, while the right hand side models the interaction
of molecules with the collision operator Ω. It is an integral equation that includes the differential

14 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

collision cross section σ for the two particles, which can be calculated geometrically by approx-
imating the molecules with rigid spheres for the collision [Frohn, 1979]. The incoming particle
velocity is transformed into the outgoing velocity, and as such, the equation represents the link to
the underlying molecular dynamics. Ω for two particles with the subscripts 1 and 2 can be written
as:

Ω(f) =

∫

(f ′

1f
′

2 − f1f2) σ(| ~u1 − ~u2|, ~ω) d~ωd ~x2, (3.9)

where ~ω denotes the solid angle over which is integrated and around which collisions are considered,
respectively. As can be seen in Equation (3.9), the cross section σ is calculated with the solid angle of
the collision and the relative speed of the two particles | ~u1− ~u2|. This equation furthermore includes
Boltzmann’s closure assumption, that leads to the aforementioned assumptions of a diluted gas with
very localized, short-range interactions of the molecules :

f12 = f1 · f2 . (3.10)

Using the BBGKY hierarchy (after Bogoliubov, Born, Green, Kirkwood and Yvon, see [Bogoli-
ubov, 1962] for details) an approximation for fN can be calculated, that can be used to get an
equation for f12. The problem is, that it includes a distribution function for three bodies f123,
which again depends on a four-body distribution function etc. However, the BBGKY hierarchy can
be truncated to approximately calculate f12 this way.

In his famous H-theorem (named after the function H(t), see below) Boltzmann showed in 1872,
that the quantity

H(t) = −
∫

f ln(f) d~ξ d~x (3.11)

obeys

dH

dt
≥ 0. (3.12)

Here f(~x, ~ξ, t) is any function that fulfills the Boltzmann equation, furthermore the equality sign in
Equation (3.12) only holds when f is a Maxwell distribution (see Equation (3.17) below). Although
Boltzmann did not show that solutions to his theorem exist, it is celebrated for its connection
of mechanics and thermo-dynamics, as well as its use as a bridge between micro- and macro-
dynamics. Equation (3.12) can be imagined as a quantitative measure for the irreversibility from
thermo-dynamics, whereas the H-theorem states that it is a monotonically increasing function in
time. The evolution of the system only stops when the system has reached its global equilibrium
with a maximal entropy H.

Due to the complicated nature of the collision operator Ω, it is often replaced by simpler ex-
pressions, that still preserve the collision invariants (these are explained in [Wolf-Gladrow, 2000])
and, as stated in the H-theorem, tend towards a Maxwellian distribution. The standard model for
this is the BGK approximation that was independently proposed in [Bhatnagar et al., 1954] by as
well as Welander [Welander, 1954]. It reads:

ΩBGK(f) =
fe − f

τ
(3.13)

Here fe is a Maxwellian distribution representing the local equilibrium, that is parametrized by the
conserved quantities density ρ, speed ~ξ and temperature T . Each collision changes the distribution
function f1 proportional to the departure from the local equilibrium fe, where the amount of this
correction is modified by the relaxation time τ . The typical collision time τ is in principle depending
on properties of the gas and it’s current state, but for the BGK approximation simplified as a single
value.

The local equilibrium is reached when Ω(fe, fe) vanishes. With this property it can be shown
that f is a collision invariant, and as such does not change under the effect of a collision. The
density ρ, momentum ξa and energy E are the Lagrangian parameters. Assuming a normalized

CHAPTER 3. MATHEMATICAL AND PHYSICAL BACKGROUND 15

particle mass of 1, they can be computed in the following way:

∫

fd~ξ = ρ (3.14)

∫

fuad~ξ = ρξa (3.15)

∫

f
u2

2
d~ξ = ρE (3.16)

The macroscopic flow speed ξa, density ρ and fluid temperature T parametrize the Maxwell distri-
bution (sometimes also called Maxwell-Boltzmann distribution). For three dimensions it is:

fM = ρ

(
m2

2πRT

)3/2

e
−(~ξ−~u)2m2

2RT (3.17)

Where R is the Boltzmann constant, and m the mass of a particle.

3.3 Derivation of the Lattice Boltzmann equation

The following section will explain the derivation of the Lattice Boltzmann equation from the con-
tinuous Boltzmann equation. It is based on [He and Luo, 1997] and the more detailed description
in [Treibig, 2002]. The method described here allows the derivation of the Lattice Boltzmann
equation from an arbitrary kinetic equation, although it historically emerged from the Lattice
Gas cellular automata. The connection to the Navier-Stokes equations will be shown in the next
section, where these equations will be derived from the Lattice Boltzmann equation via Chapman-
Enskog expansion. The following abbreviations will be used from now on: f(~x, ~ξ, t) = f(t) and

f(~x + ~ξa, ~ξ, t + a) = f(t + a). The same abbreviations hold for g.
As a starting point, the Boltzmann equation with BGK collision approximation will be used:

∂f(t)

∂t
+ ~ξ ∇f(t) = − 1

λ

(

f(t) − g(t)
)

(3.18)

where f is the particle distribution function at time t, position ~x for the microscopic velocity ~ξ.
1/λ = A · n is the relaxation time for the collision, that is calculated from the number of particles
n and the proportional coefficient A. Here, the collision term has been linearized according to
Equation 3.13 for simplicity, without loosing generality. g is the Maxwell distribution fM from
Equation 3.17.

The hydrodynamic properties of the fluid, the density ρ, velocity ~u and the temperature T can
be calculated with the moments of the function f . Here, the energy ε from the energy density ρε
can be used to determine the temperature of the fluid.

ρ =

∫

f(~x, ~ξ, t)d~ξ (3.19)

ρ~u =

∫

ξf(~x, ~ξ, t)d~ξ (3.20)

ρε =

∫
1

2
(~ξ − ~u)f(~x, ~ξ, t)d~ξ (3.21)

Note that the equilibrium distribution function g is calculated with these hydrodynamic moments,
although it is written as a function of time and velocity. Hence, these values have to be correctly
approximated after discretization.

3.3.1 Time discretization

Equation 3.18 can be formulated as an ordinary differential equation (ODE):

Df

Dt
+

1

λ
f =

1

λ
g (3.22)

16 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

where
D

Dt
=

∂

∂t
+ ~ξ∇ (3.23)

is the time derivative along the microscopic velocity. Equation 3.22 is a linear ODE of first order,
hence, using a standard formula to solve this type of equation (see [Bronstein et al., 1999]), solutions
can be found with:

f(t + δt) = f(t) · e−
δt
λ +

1

λ
e−

δt
λ ·

∫ δt

0

e
t′

λ g(t + t′)dt′ (3.24)

Assuming that δt is very small and g is a smooth function, g(t+ t′) can be approximated with linear
interpolation for 0 ≤ t′ ≤ δt:

g(t + t′) = (1 − t′

δt
)g(t) +

t′

δt
g(t + δt) + O(δ2

t) (3.25)

This can be used to solve the integral from Equation 3.24.

1

λ
e−

δt
λ

∫ δt

0

e
t′

λ g(t + t′)dt′ =

1

λ
e−

δt
λ

∫ δt

0

e
t′

λ (1 − t′

δt
)g(t) +

t′

δt
g(t + δt)dt′ =

1

λ
e−

δt
λ

[

e
t′

λ λg(t) − e
t′

λ

1
λ t′ − 1

1
λ2

g(t)

δt
+ e

t′

λ

1
λ t′ − 1

1
λ2

g(t + δt)

δt

]δt

0

=

1

λ
e−

δt
λ g(t)

[

λe
δt
λ − (λ − λ2

δt
)e

δt
λ − λ − λ2

δ − t

]

+ g(t + δt)

[

(λ − λ2

δt
)e

δt
λ +

λ2

δ − t

]

=

g(t) − e−
δt
λ g(t) +

[

1 +
λ

δt
(e−

δt
λ − 1)

]

[g(t + δt) − g(t)] (3.26)

With this, Equation 3.24 can be rewritten as:

f(t + δt) − f(t) =
(

e−
δt
λ − 1

)

[f(t) − g(t)] +

(

1 +
λ

δt
(e−

δt
λ − 1)

)

[g(t + δt) − g(t)] (3.27)

Furthermore, e−
δt
λ can be Taylor expanded in δt in the following way:

e−
δt
λ = e−

0+δt
λ = 1 + δt

(

− 1

λ
e0

)

+ O(δ2
t) ≈ 1 − δt

λ
(3.28)

So Equation 3.27 simplifies to:

f(t + δt) − f(t) =

(

1 − δt

λ
− 1

)

[f(t) − g(t)] +

(

1 +
λ

δt
(1 − δt

λ
− 1)

)

[g(t + δt) − g(t)]

f(t + δt) − f(t) = −δt

λ
(f(t) − g(t)) (3.29)

Here, the relaxation time δt

λ is usually written as 1
τ . This formula is already similar to Equation 2.3

from Chapter 2. What is still missing, is the discretization of the velocity space and an equilibrium
function g that is consistent with the Navier-Stokes equations.

3.3.2 Approximation of the equilibrium distribution

The Maxwell distribution that is used as the equilibrium distribution function g was already ex-
plained in Section 3.2 (see Equation 3.17). For a particle mass of 1 and D dimensions it reads:

g(~u) =
ρ

(2πRT)D/2
e−

(~ξ−~u)2

2RT (3.30)

This function will be Taylor expanded in ~u up to the third order. For smaller velocities (or low Mach
numbers) this approximation will be exact enough. Expanding the quadratic form in the exponent

CHAPTER 3. MATHEMATICAL AND PHYSICAL BACKGROUND 17

of e and Taylor expanding the result yields the following equations (here (ρ
(2πRT)D/2 e−

~ξ2

2RT) will be

abbreviated by β) :

g(0 + ~u) = βe
~ξ~u
RT

−
~u2

2RT

= g(0) + ~ug
′(0) +

~u2

2
g
′′(0) + O(~u3)

= β ·

(

1 + ~u ·

»

β
1

RT
e

~ξ~u
RT

−
~u2

2RT
· (~ξ − ~u)

–

+
~u2

2
β

»

1

(RT)2
e

~ξ~u
RT

−
~u2

2RT
· (~ξ − ~u)2 +

1

RT
· (−1)

–

)

+ O(~u3)

= β ·

1 +
~ξ · ~u

RT
+

(~ξ · ~u)2

2(RT)2
−

~u2

2RT

!

The terms of this last equation step are recognizable as those from Equation 2.1. For this formula
the velocities (the phase space) is still not properly discretized. The following formula will be used
as the local equilibrium distribution for the following derivations:

f (eq) =
ρ

(2πRT)D/2
e−

~ξ2

2RT

(

1 +
~ξ · ~u
RT

+
(~ξ · ~u)2

2(RT)2
− ~u2

2RT

)

(3.31)

3.3.3 Discretization of the velocities

For simplicity, the D2Q9 model will be derived in the following section. As can be seen in Equa-
tion 3.19 the moment integrals over the whole velocity space are needed. As the velocity is not yet
discretized, these run from −∞ to +∞ in both x- and y-direction for a two-dimensional model. The
moments of the particle distribution functions are important for the consistency with the Navier-
Stokes equations. Another important property that has to be retained by the discretization is the
isotropy, which is the most important of the Navier-Stokes symmetries. So the lattice should be
invariant to rotations of the problem – this can be shown by isotropy-tensors as in [Wolf-Gladrow,
2000]. But for the LBM derivation, the moments are directly used as constraint for the numerical
integration method.

For accurate results, hence, the integrations of the second moment still has to be correct for
models that include the temperature. As an isothermal model will be used, only the first moment,
the velocity will be required. The moments of Equation 3.31 in two dimensions can generally be
written as follows:

I =

∫

ψ(~ξ)f (0)d~ξ =
ρ

(2πRT)D/2

∫

ψ(~ξ) e−
~ξ2

2RT

(

1 +
~ξ · ~u
RT

+
(~ξ · ~u)2

2(RT)2
− ~u2

2RT

)

d~ξ (3.32)

where ψ is the moment function, that contains powers of the velocity components

ψ(~ξ) = ξm
x ξn

y (3.33)

This is necessary, as the moments equation above also contains powers of the velocity in the paren-
theses to the right. So after restructuring of the equation, moments of up to the third order will
occur in the equation - one from the velocity moment, and two from the (~ξ ·~u)2 term. For numerical

18 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

treatment Equation 3.32 can be written in the following way:

I =
ρ

(2πRT)D/2

∫

ψ(~ξ) e−
~ξ2

2RT

(

1 +
~ξ · ~u
RT

+
(~ξ · ~u)2

2(RT)2
− ~u2

2RT

)

d~ξ

=
ρ

π
(
√

2RT)−2

∫

ξm
x ξn

y e
−

~ξ2

(
√

2RT)2

(

1 − ~u2

(2RT)
+

2~ξ · ~u
(2RT)

+
2(~ξ · ~u)2

(
√

2RT)4

)

d~ξ

=
ρ

π
(
√

2RT)−2 · (
∫

ξm
x ξn

y e
−

ξ2
x+ξ2

y

(
√

2RT)2 (1) d~ξ −
∫

ξm
x ξn

y e
−

ξ2
x+ξ2

y

(
√

2RT)2

(

u2
x + u2

y

(2RT)

)

d~ξ +

∫

ξm
x ξn

y e
−

ξ2
x+ξ2

y

(
√

2RT)2

(
2(ξxux + ξyuy)

(2RT)

)

d~ξ +

∫

ξm
x ξn

y e
−

ξ2
x+ξ2

y

(
√

2RT)2

(

2(ξ2
xu2

x + 2ξxuxξyuy + ξ2
yu2

y)

(
√

2RT)4

)

d~ξ) (3.34)

The next steps are necessary for each of the four integral-terms of Equation 3.34, but all proceed
as shown for the first term:

ρ

π
(
√

2RT)−2 ·
(

∫

ξm
x ξn

y e
−

ξ2
x+ξ2

y

(
√

2RT)2 d~ξ

)

=
ρ

π
(
√

2RT)−2 ·
(

∫ ∫

e
−

ξ2
x

(
√

2RT)2 ξm
x e

−

ξ2
y

(
√

2RT)2 ξn
y dξx dξy

)

=
ρ

π
(
√

2RT)−2 ·
(

∫

e
−

ξ2
x

(
√

2RT)2 ξm
x dξx ·

∫

e
−

ξ2
y

(
√

2RT)2 ξn
y dξy

)

=
ρ

π
(
√

2RT)−2 · ((
√

2RT)m

∫

e
−(ξx

(
√

2RT)
)2

(
ξx

(
√

2RT)
)m d

ξx

(
√

2RT)

· (
√

2RT)n

∫

e
−(

ξy

(
√

2RT)
)2

(
ξy

(
√

2RT)
)n d

ξy

(
√

2RT)
)

=
ρ

π
(
√

2RT)m+n−2 · (
∫

e
−(ξx

(
√

2RT)
)2

(
ξx

(
√

2RT)
)m d

ξx

(
√

2RT)

·
∫

e
−(

ξy

(
√

2RT)
)2

(
ξy

(
√

2RT)
)n d

ξy

(
√

2RT)
)

=
ρ

π
(
√

2RT)m+n−2 ·
(∫

e−ζ2
xζm

x dζx ·
∫

e−ζ2
yζn

y dζy

)

=
ρ

π
(
√

2RT)m+n−2Im
x In

y (3.35)

It can be seen that Im
i is the m-th moment of the function e−ζ2

. Equation 3.34 can be rewritten
using these moments:

I =
ρ

π
(
√

2RT)m+n−2

[(

1 − ~u2

(2RT)

)

Im
x In

y +

2(uxIm+1
x In

y + uyIm
x In+1

y)

(
√

2RT)
+

u2
xIm+2

x In
y + 2uxuyIm+1

x In+1
y + u2

yIm
x In+2

y

RT

]

(3.36)

The crucial step for the derivation of the LBM is to use the proper quadrature formula to numerically

CHAPTER 3. MATHEMATICAL AND PHYSICAL BACKGROUND 19

integrate these moments. The quadrature works in the following way:

∫

f(x)W (x)dx =

N∑

j=1

wjf(xj) (3.37)

Where W (x) is the weighting function, e−x2

in this case, and f(x) is a polynomial in x, e.g.
f(ζx) = ζm

x . The integral over the multiplication of these two functions is approximated by the
sum over function evaluations at the values x = xj with the weights wj . The values xi are also

called abscissas. In total, there are N abscissas and weights. For functions like e−ζ2

Gauss-Hermite
quadrature can be applied, which is correct for W -polynomials up to the order (2N −1). The order
of the Gauss-Hermite quadrature has to be chosen according to the order of the moment-polynomial
ψ. Although the model is isothermal the energy due to the temperature has to be kept constant.
So there is no additional level of freedom for the temperature, but for the moment integration it
has to be considered. Hence, for a ψ of second order, and second order terms in the (~ξ · ~u) term,
moments of up to fourth order have to be integrated correctly. This requires an Gauss-Hermite
quadrature of third order (N = 3):

Im
i =

3∑

j=1

wj(ζj)
m (3.38)

with the following weights and abscissas:

ζ1 = −
√

3/2, ζ2 = 0, ζ3 = +
√

3/2 (3.39)

w1 =

√
π

6
, w2 =

2
√

π

3
, w3 =

√
π

6
(3.40)

Having applied the Gauss-Hermite quadrature, the moment function can be again shortened to the
following form:

I =
ρ

π

3∑

i=1

3∑

j=1

wiwjψ(ζi,j)

(

1 +
~ξ · ~u
RT

+
(~ξ · ~u)2

2(RT)2
− ~u2

2RT

)

(3.41)

where ζi,j is the vector given by the quadrature abscissas ζi,j = (
√

2RT)(ζi, ζj)
T . As the two sums

run over three values for i and j each, there are a total of nine possible values for ζi,j and wiwj . For
these a new single index will be introduced. Furthermore, a number of substitutions can be made.
As an isothermal model is used, the temperature T has no physical relevance, and can be replaced
by a constant c =

√
3RT . The speed of sound cs = 1/

√
3 in the model yields c2

s = c2/3 = RT . The
weights, divided by π read:

w0 = w2w2 = 4/9

w1..4 = w1w2, w2w1, w3w2, w2w3 = 1/9

w5..8 = w1w3, w3w1, w1w1, w3w3 = 1/36 (3.42)

Each component of the vectors ζi,j is either 0 or ±
√

2RT
√

3/2 = ±
√

3RT = c:

~e0 = ζ1,1 = (0, 0)T

~e1..4 = ζ1,2, ζ2,1, ζ3,2, ζ2,3,= (±1, 0)T c, (0,±1)T c

~e5..8 = ζ1,3, ζ3,1, ζ1,1, ζ3,3,= (±1,±1)T c

(3.43)

With these discrete velocities, Equation 3.41 reads:

I =

9∑

α=1

Wαψ(~eα)feq
α (3.44)

Here Wα can be identified as 2πRTe
~ξ2

2RT . This yields the known form of the equilibrium distribution
function for each of the nine velocities:

feq
α = wαρ

(

1 +
3~e · ~u

c2
+

9(~e · ~u)2

2c4
− 3~u2

2c2

)

(3.45)

20 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Note that the lattice velocity vectors were given by the chosen Gauss-Hermite quadrature. The
configuration of the lattice was in this case also obtained from these velocities. It is possible to
discretize velocities and lattice configuration differently, as has been shown in [He and Luo, 1996]
and [Bouzidi et al., 2001].

Other LBM models like the D3Q27 model can be derived in the same way. For the more
often used three-dimensional models D3Q15 and D3Q19, however, it was not possible to apply
this method. Problems arise from the more irregular arrangement of the velocity vectors, that
cannot be easily formulated as a quadrature term. For these models the ansatz method has to
be used [Wolf-Gladrow, 2000]. For a given kinetic equation like Equation 3.18 together with an
equilibrium distribution as the one from Equation 3.31 the velocity weights for a specific lattice can
be calculated. With multi-scale analysis constraints for the moments of f can be set up, and solved
to yield the required coefficients.

3.4 Chapman-Enskog Expansion

To show that the Boltzmann equation can be used to describe fluids, the Navier-Stokes equations
are derived by a procedure called Chapman-Enskog expansion, or multi-scale analysis. It relys
on the Knudsen number CKn, which is the ratio between the mean free path length λ and the
characteristic shortest scale of the macroscopic system that needs to be considered (LC). Hence, λ
is the mean length a particle travels between two collisions, while LC contains for example the size
of an obstacle in the fluid. The Knudsen number has to be less than one, for the treatment of the
fluid as a coninuous system.

CKn =
λ

LC
(3.46)

For the derivation, a splitting of the Boltzmann equation into different scales for space and time
variables (or a hierarchy of these) is performed. It is based on the epxansion parameter ε for which
the Knudsen number CKn will be used. The expansion is done in a way, that each scale models a
process of interest. Usually the expansion is truncated after terms of second order. For the time
variables, the following representation is chosen:

t = εt1 + ε2t2. (3.47)

The time t represents the very fast local relaxations in a fluid by collisions. Sound waves, as well
as advection, are of the scale t1, and considerably slower than the local relaxations. Still, these
are faster than diffusion processes, that are of time scale t2. Only one spatial expansion has to be
considered, giving the following expansion of first order:

~x = ε~x1. (3.48)

This is due to the fact, that advection and diffusion both are considered in similar spatial scales
x1. The representation of the differential operators is similar:

∂

∂xa
= ε

∂

∂xa
(3.49)

∂

∂t
= ε

∂

∂t
+ ε2

∂

∂t
(3.50)

For a consistent expansion, the second order terms in space are also necessary. The moment
equations of f are directly expanded to a sum of the form:

f =
∞∑

n=0

εnfn (3.51)

Furthermore, it is assumed that the time dependance of f is only caused by the variables ρ, ~u and T .
Expanding Equation (3.8) in both space and time up to second order yields the following equation:

ε
∂f

∂t1
+ ε2

∂f

∂t2
+ εua · ∂f

∂xa
+

1

2
ε2uaub

∂2f

∂xa∂xb
= Ω(f0) + ε

∂Ω(f1)

∂f
(3.52)

CHAPTER 3. MATHEMATICAL AND PHYSICAL BACKGROUND 21

Note that f0 is a Maxwell distribution, and as such, due to the definition of the BGK collision
approximation in Equation (3.13), Ω(f0) is zero. The three scales from O(ε0) to O(ε2) can be
distinguished in Equatioen 3.52, and are seperately handled. From there on, subsequent expansions
of the conservation equations can be performed. Expanding mass up to second order gives an
equation of the form:

εm̂1 + ε2m̂2 = 0 (3.53)

As ε is the Knudsen number, it is necessarily larger than zero. So are the terms m̂1 and m̂2 that
represent the expansions for first and second order, respectively [Harris, 1971]. For first order terms
of Equation (3.52), using a mass and momentum of zero, results in the following two equations:

∂ρ

∂t1
+

ρ∂ua

∂x1a
= 0 (3.54)

∂ρua

∂t1
+

∂
∫

uaubf
0d~u

∂x1b
= 0 (3.55)

The continuity equation is already recognizable. When the integral of the second equation is
analytically performed, it can be replaced by ρuaub + ρTδab:

∂ρua

∂t1
+

∂ρuaub

∂x1b
+

∂ρTδab

∂x1b
= 0 (3.56)

This can be recognized as the Euler equation for inviscid flows without dissipation. To get the
Navier-Stokes equations from here, the second order equations have to be considered. These are
much more complicated to handle, as both equilibrium and non-equilibrium levels are needed. Still,
using first order conservation terms of zero, and restoring the continuous form of the equations, the
Navier-Stokes equations as in Equation (3.2) emerge. This is possible as terms of O(u3) can be
neglected, due to the assumption of small velocities for the expansion. The expansion also yields
the equation for the calculation of the viscosity from the LBM parameters. For more details refer
to [Harris, 1971; Wolf-Gladrow, 2000].

3.5 Further enhancements

The LBGK model of the previous sections can cause problems due to the relaxed incompressibility
constraint. When considering a constant mass flow for an incompressible fluid, a reduced density
would lead to a higher velocity. This is physically incorrect, and leads to wrong results. The
incompressibility can be enhanced by substituting the density in Equation 3.45 with ρ = ρ0 + δρ.
For smaller Mach numbers M (which means that ~u/cs → 0) the changes in density are of order
O(M2). Moreover, as ~u is the second moment of f it is also of O(M2). After the aforementioned
substitution of the density, terms like δρ(~u/cs) and δρ(~u/cs)

2 are of order O(M3) and O(M4),
respecitvely, hence they are negligible. After removing these terms, the Equation 3.45 has the
following form for each of the nine velocities:

feq
α = wα

(

δρ + ρ0
3~e · ~u

c2
+

9(~e · ~u)2

2c4
− 3~u2

2c2

)

(3.57)

Here ρo can again be normalized to 1, and the density computed from Equation 3.19 is taken as δρ.
Thus, the main difference is, that the ~u-terms are not multiplied with ρ anymore. Note that, as ρo

equals 1, the velocity ~u is not divided by ρ anymore – so the implementation requires less floating
point divisions than the original method.

Another way to stabilize the Lattice Boltzmann method, is to use the moment method [d’Humières,
1992]. In this case the distribution functions of the LBM are transformed into velocity moments.
Of these, only a few (three for the D2Q9 model – the density and the to momentum velocities)
have to be relaxed with τ , while the relaxation parameter can be chosen from a wider range for the
other moments. [d‘Humières et al., 2002; Lallemand and Luo, 2000] The resulting equations are
only slightly more complicated than the normal LBGK equations, and have an enhanced stability,
that allows simulations of high Reynolds numbers even on coarse grids.

For the implementation explained in Chapter 5 the incompressible LBGK model was chosen, as
it’s stability is sufficient for the targeted problems.

22 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

CHAPTER 4. THE MODEL 23

Chapter 4

The model

The model used in this simulation will be described in this chapter. It uses a D3Q19 LBM with a
free boundary between fluid and gas phase and surface tension forces. The D3Q19 lattice is known
from Chapter 2. The topology representation, boundary conditions for the free surface and the
surface tension will be explained in more detail in the following sections.

4.1 The single-phase free-surface model

Other multi-phase models, like the gradient approach in [Shan and Chen, 1993] or the free energy
methods [Swift et al., 1996] simulate all phases with separate particle distribution functions for each
phase. As a foam like structure mainly consists of gas, with only thin membranes of fluid between
the bubbles, it would be a huge task to also simulate the gas motion in all bubbles, although it’s
effect on the foam structure is negligible. So for this application, the simulation of metal foams, it
was decided to not include the gas phase in the simulation. The different phases only use a single
lattice, and are distinguished by flags for each cell in the grid, that are also used to identify for
example the no-slip and free-slip boundary cells. The topology of the problem is described with the
following three types of cells:

• filled with fluid: this cell is completely filled by the fluid, and treated as explained in Chapter 2.
• interface: these cells contain both liquid and gas. Care has to be taken during streaming.
• gas: these cells are not considered in the fluid simulation.

Hence, the complicated part of this model deals with the interface cells. To prevent large gradients
and mixing of fluid and gas, it is required that there is only a single layer of interface cells around
the fluid cells. This is shown in Figure 4.1.

For each interface cell the mass of the liquid in this cell is tracked. This cell mass is used to
compute the fill level of a cell by dividing by the density of this cell. So the mass is in the range
of 0 (cell is empty) and ρ (cell is completely filled with fluid). In these two cases, minimal and
maximal fill level of the cell, the type of the cell is changed - empty interface cells become gas
cells, completely filled interface cells become fluid cells. When this happens, the surrounding empty
or fluid cells have to be initialized as interface cells accordingly. This is important, as the model
described here does not work for adjacent fluid and gas cells. This would result in a loss of mass,
invalidating the simulation.

The new mass m(~x) of each interface cell is calculated after the collide step as the difference
between the mass, or number of particles, leaving and entering the cell:

m(~x) = m(~x) +
19∑

l=1

εIfI(~x + ~ei) − εifi(~x) (4.1)

where fI is the distribution function that points into the opposite direction of fi. The ε values
represent the current fill level of the corresponding cells. They account for the area of the interface
between the two adjacent cells. This change of mass is calculated during the stream step. The
streaming already performs this mass transport correctly for normal fluid cells, but it cannot work

24 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

FG G G

G G

G

GFF

FFF FFF

FFFFFFFFF

FFF

FFF

FFF

FFF

FFF

FFF

FF

F

F

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

F

F

F F

F FF F FF F

G G

G G

G G

G GG G

G G G G

G G

G G

G G

G G

G G

G G

G G

F

Fluid

Gas

Gas
Gas I

II

II

II

I

I I I I

IIIII

II

I

I

I I I

I I I

I

I

I

I

I I
G

F

I

Cell filled
with gas

Interface
cell, partly
filled with
fluid

Cell filled
with fluid

Figure 4.1: Each LBM cell is either a fluid, interface or gas cell. A fluid configuration is subdivided
into cells, which are completely, partly and not filled with fluid.

for interface cells, as these have neighboring cells that do not contain fluid. So for all interface cells
in all directions where the neighboring cells contain fluid (either interface or fluid cells) the change
of mass is updated with Equation 4.1.

It is assumed, that the fluid is much less viscous than the gas surrounding it. For example air
has a dynamic viscosity of ca. 1.5 · 10−5m2/s, while that of water is ca. 9 · 10−7ms/s. So the fluid
has a much higher Reynolds number than the gas. In this case the effects of the gas phase on fluid
motion can be neglected, as the gas reaches the local equilibrium much faster and at the interface
just moves the same way the fluid does. This assumption is needed to reconstruct the distribution
functions that are needed from gas cell in the neighborhood of interface cells. This is done in the
following way:

fI(~x, t + 1) = f
(0)
i (~uB , ρB) + f

(0)
I (~uB , ρB) − fi(~x, t) (4.2)

where fi is again the particle distribution function that is opposite of the distribution function fI .

f
(0)
i is just the local equilibrium with the velocity of the fluid at the bubble interface. The two

parameters of f (0) are known, as the velocity is just that of the interface cell and the density is
known for bubbles (see Section 4.2) and for the atmosphere (ρB = 1). This directly corresponds
to the assumption of a negligible effect from the gas phase upon the fluid phase, as the gas phase
is assumed to reach the local equilibrium in each time step that is simulated for the fluid. So the
distribution function that would be streamed from a gas cell is determined by the two opposite
equilibrium distribution functions for the gas and the motion of the fluid (given in this direction by
fi). This formula can be expanded to include surface tension and pressure, as will be explained in
the following sections.

4.2 Bubbles

The only important effect of bubbles in the fluid is the pressure upon the fluid surface that changes
when the bubble is compressed or expands. For this, the mass of the gas in the bubble has to
be calculated (upon initialization at the moment a bubble forms), and by tracking the volume of
the bubble, the pressure in each time step can be calculated. This requires that each empty and
interface cell is identified with a bubble, so additionally a bubble ID has to be stored for each cell.
The pressure is a surface force that is applied to the interface cells in the stream step by scaling
the distribution functions from gas cells according to the pressure. This, for ρB from Equation 4.2,
the pressure that results from the bubble at ~x, can be taken. It is given by the bubble ID stored
in the corresponding cell. The pressure force usually applies an acceleration normal to the surface
depending on the surface area. This is approximated by the reconstruction mechanism. The pressure
acts for each distribution function streamed from an empty cell, which in total approximates the
normal direction.

CHAPTER 4. THE MODEL 25

Coalescence is done by merging two bubbles that touch each other. This case occurs when to
adjacent gas cells exist, that have different bubble IDs. A new bubble with the combined volume
and mass of the two touching bubbles is created. The bubble IDs of all cells from the old two
bubbles have to be changed accordingly.

For realistic simulation of bubbles, an identification of gas regions surrounded by fluid is required.
This partitioning is not implemented in the current version of the program. The bubbles have to be
defined at the beginning of the simulation, during which the total number of bubbles only decreases
due to coalescence.

4.3 Surface tension

The surface tension, like the pressure, is a surface force that is added in the reconstruction term:

fI(~x, t + 1) =
(

f
(0)
i (~uB , ρB) + f

(0)
I (~uB , ρB)

)

· σ − fi(~x, t) (4.3)

where σ is a factor that is influenced by the curvature of the surface at ~x and the strength of the
surface tension of the fluid. The curvature can be computed in the following way. In two dimensions,
the curvature of a line can be computed by reconstructing a circle through three points that lie on
the surface. Given three points ~p0, ~p1 and ~p2 the center of the circle (cx, cy)T that touches all three
points is:

RR

R

S

p1

p2

p3

(cx , cy)

d1x = p1x − p0x

d2x = p2x − p0x

d1y = p1y − p0y

d2y = p2y − p0y

a0 = p2
1x + p2

1y − p2
0x − p2

0y

a1 = p2
2x + p2

2y − p2
0x − p2

0y

d = d1xd2y − d2xd1y

cx = (a0d2y − a1d1y)/2d

cy = (a1d1x − a0d2x)/2d (4.4)

The curvature at one of the three points is then one divided by the radius of the circle:

σ =
1

R
, R = |~p − (xc, yc)

T |2 (4.5)

The calculation of the curvature at a point ~p of a surface in three dimensions is more complicated.
The curvature can be calculated for all curves that pass through the point on the surface (see
Figure 4.2a). For each curve the curvature can be calculated with Equation 4.4 and Equation 4.5,
but usually curvatures from normal sections are desired. This requires the normal of the curve ~nC

to be equal to the normal of the surface ~N in the point ~p. For a given curve C which goes through
~p , the curvature σC can be transformed into the curvature σN of the normal section through ~p by
the formula of Meusnier :

σN =
σC

cos(~N,~nC)
(4.6)

Usually, the principal curvatures are of interest. These are the minimum and maximum of the
curvatures through all possible curves in normal sections through ~p. These two normal sections are
perpendicular to each other, and unique for each surface point. For the simulation in this thesis, the
principal curvatures were not calculated (see [Bronstein et al., 1999] for details), due to the higher
computational complexity. Two curvatures along axis aligned planes are calculated (see Section 5.3
for details), and the mean curvature of these two is used to scale the distribution functions from
Equation 4.3.

26 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

nC

C

n

tC

S

a) b)

tC

n

α

C

S

a curve C on surface S two sections through surface S
with the same tangent and angle α

Figure 4.2: The curvature can be calculated along any curve C on the surface S, as shown to on
the left. To the right, two sections through S can be seen, one containing the normal of the surface
~n, while the other is rotated by the angle α.

4.4 Gravity

External forces like gravity can be incorporated into the LBM in various ways (see [Buick and
Greated, 2000]). The easiest way, that was explained in Chapter 2, is to modify the calculated
velocity in each cell in the collision step. Thus, the local equilibrium is calculated with a modified
velocity ~u∗ that is given by:

~u∗ = ~u + τ ~F (4.7)

where ~F is the external force, and τ the LBM relaxation time. Care has to be taken when calculating
the velocity in each cell for e.g. particle tracing. It is now defined as the average velocity before
and after the collision ~u + 1

2τ ~F .
Another possibility is to modify the equilibrium functions. For each calculation with Equa-

tion 2.1 the particle distribution function is modified by the contribution of the force along this
direction. A combination of both methods is also possible. As the different methods did not signif-
icanlty change the simulation, the first one was chosen, as it requires less floating point operations
than the second and the combined method.

4.5 LBM Parametrization

While all important aspects of the Lattice Boltzmann Method were described in the previous
sections, it is not obvious how to parametrize a simulation to represent a real fluid. The presented
method is based upon the parametrization of the metal foam simulations from [Körner et. al].

4.5.1 Parameter calculation

To specify a given problem, the following values have to be known:

• the viscosity of the fluid ν [m
2

s]

• the surface tension σ [N
m]

• the strength of the external force (e.g. gravity) g [m
s2]

• the density of the fluid ρ [kg
m3]

• the size of a LBM cell ∆x [m]

These will be used to set a reasonable time step size ∆t [s] and limit the mass difference in
the simulation ∆m [kg]. Generally, two different sets of values have to be distinguished: the one
mentioned above, which contains the physical values, and another dimensionless one, which contains

CHAPTER 4. THE MODEL 27

the lattice values. The corresponding dimensionless lattice values can be calculated in the following
way:

• lattice viscosity ν∗ = ν · ∆t
∆x2

• lattice surface tension σ∗ = σ · ∆t2

∆m

• lattice force g∗ = g · ∆t2

∆x

• lattice density ρ∗ = ρ · ∆x3

∆m

The basis for the parameter calculation is the following equation, which can be used to calculate
the dynamic viscosity ν of a fluid that is simulated with given the LBM parameters:

ν∗ = c2
s

(

τ − 1

2

)

=
2τ − 1

6
(4.8)

Here τ = 1/ω is the relaxation time. As usually the fluid viscosity ν is given, this formula can
be used to calculate the relaxation time needed for a simulation. Trying this, it will be noticed
that the LBM only yields valid results for τ within certain limits. Especially when τ is close
to 1

2 , the simulation can quickly become instable. For this thesis the following limits were used:
0.51 ≤ τ ≤ 2.5. Hence, Equation 4.8 can be used to restrict τ in the following way:

τ =
6 · ν∗ + 1

2
⇒ 0.67 ≤ ν∗ ≤ 3.3 · 10−3 (4.9)

The time scale can be calculated by imposing a restriction on the compressibility for the simulation.
A limit of 10−4 will be used here, but depending on the problem, this value might be smaller for
stronger forces acting upon the fluid. The upper limit for the length of a time step is then calculated
by:

g · ∆t2

∆x
≤ 10−4

∆t ≤
√

10−4 · ∆x

g
(4.10)

The lattice viscosity ν∗ depends upon the size of the time step, so it is necessary to check whether
ν∗ is in the boundaries given by Equation 4.9. If this is the case, the relaxation time τ can be
calculated.

The density of the fluid only affects the surface tension, as the lattice density is always set one
ρ∗ = 1. Now the mass scale can be calculated as:

∆m =
ρ

ρ∗
· ∆x3 (4.11)

It is needed to calculate the lattice surface tension, as described above, σ∗ = σ · ∆t2

∆m . Now all LBM
parameters are given, and the simulation can be run. The size of the computational domain is then
given by the number of LBM cells that are used for the simulation.

Note that the speed of sound, which is often mentioned in theory of the LBM, does not cor-
respond to the physical speed of sound of the simulated fluid. It just represents the speed with
which information is transported through the grid. A realistic speed of sound, for example 1500m

s
in water, would result in a very small time step length and thus necessitate a huge amount of time
steps and computations for a simulation.

4.5.2 An example problem

Water plays an important role in everyday life, and as such most model problems in this thesis were
targeted to be comparable to known situations. Furthermore the liquid aluminium used to create
metal foams has a similar viscosity as water, hence the experiments can also be used to simulate
model problems that are relevant for foaming simulations. For simulating water the following values
were used:

28 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

• viscosity ν = 10−6 m2

s

• surface tension σ = 7 · 10−4 kg
s2

• gravitational constant g = 9.81m
s

• density ρ = 1000 kg
m3

As length scale, e.g. ∆x = 100µm = 0.0001m can be used. The earth gravity results in a time
step length of ∆t = 3 · 10−5s. When checking this for the limits of Equation 4.9, the time step is
slightly smaller than the equation allows, but the resulting τ = 5.09 was still large enough for the
implementation of this thesis. The resulting surface tension is 0.063, which is relatively high for the
simulation, but as the spatial scale is very small, it is realistic.

Assuming a grid size of 1003, this would correspond to a cube filled with water having a side
length of 1cm. The simulation would need roughly 300MB of memory, and 33.000 time steps are
required to simulate one second.

For the simulation of metal foams on the SR8000, the limiting factors are memory and per-
formance requirements. There are a total of 168 nodes, with roughly 6.5GB of available memory
each. This allows the simulation of domains with up to 2503 LBM cells on each node. Assuming
a simple and regular domain decomposition for 53 nodes, the whole domain would be of size 12503

or 12.5cm3. This would be sufficient to simulate even complex foaming processes.

4.5.3 Problem scales

A standard computer, with 1GB of RAM and a CPU of at least 2GHz allows the simulation of
roughly 1203 LBM cells. With the calculations above this would correspond to only 1.2cm3. As
it is desirable to simulate larger regions of fluid even with desktop computers, the first idea that
comes to mind is to choose a larger spatial scale, e.g. ∆x = 1cm. The problem with this is, that
the lattice viscosity decreases, and the simulation quickly becomes instable.

Another possibility is to change the parameters as described in Section 3.1. The Reynolds
number remains constant if the characteristic length is decreased, and the flow speed increased by
the same factor. A smaller spatial scale would result in a more stable simulation, and is as such
desirable. In this case another LBM restriction becomes problematic. The speed in each cell should
not be larger than roughly 0.1. This is, however, easily the case when e.g. using the gravity of
the earth. The only way to overcome these problems would be to use a different discretization
of the Lattice Boltzmann equation. These have been proposed by e.g. [Coa et al., 1997], and
allow more flexible time steps and spatial discretizations. However, they also require much more
computational overhead, and as the velocities of a foaming process are small enough, these methods
were not implemented in this thesis.

CHAPTER 5. IMPLEMENTATION 29

Chapter 5

Implementation

The single-phase free-surface lattice Boltzmann method described in the previous chapters of this
thesis was implemented in C/C++. For performance reasons, the program was not designed in a
fully object-oriented way, as virtual functions and irregular data layouts should be avoided in high
performance codes. The relevant details of the model implementation are explained in this chapter.

5.1 Performance considerations

For a standard LBM implementation the memory bandwidth of the used platform will be the
limiting factor. Each cell requires at least 19 floating point values, that will usually be stored with
double precision requiring 8 bytes each. Furthermore, the complete grid is required twice. Hence, a
current Intel Pentium 4 Processor with 512KB Level 2 Cache will not be able to fit even a 123 grid
into cache. As has been shown in [Wilke, 2002] there are many different ways of implementing a
lattice Boltzmann method, that differ significantly in performance. Although the variants in [Wilke,
2002] are also applicable for 3D LBM, the calculation of surface tension limits the selection. After
every simulation step, a surface reconstruction is necessary (this will be explained in more detail in
Section 5.3). This would make very large stencils and offsets necessary if multiple time steps were
to be blocked. Hence, for now the implementation does not block multiple steps.

Generally, blocking is difficult due to the high memory requirements and limited reuse of the
calculations. For the data layout, there are several possibilities, shown in Figure 5.1 (most illustra-
tions in this chapter will show two-dimensional problems, but are directly transferable to 3D). As all
19 distribution functions are usually modified simultaneously, the spatial locality can be increased
by not storing the distribution functions in 19 · 2 separate arrays, but storing 2 arrays with sets of

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...

1,1 1,2 N,N...
N,N

1,1 1,2

...

...

... 1,N

N,N-1

2,1 ...

N,N

1,1 1,2

...

...

... 1,N

N,N-1

2,1 ...

N,N

1,1 1,2

...

...

... 1,N

N,N-1

2,1 ...

a) c)b)

a single array element at position (i,j) distribution function for grid 1 distribution function for grid 2i,j

Figure 5.1: The datalayout for an LBM implementation can consist of either: distinct arrays for
each distribution function type, two arrays containing all necessary distribution functions for each
cell in a struct or a single array with both sets of distribution functions.

30 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

all 19 functions. Upon access to one distribution function, the next ones will be loaded into cache
with the same cache line, speeding up accesses to these distribution functions.

This locality can be further increased by merging the two arrays, as shown in Figure 5.1. Only
a single array is stored, that contains two sets of distribution functions for each cell. However, this
locality is not always desired. During the stream step, both arrays are accessed – one for reading,
the other one for writing. In all other calculations only one array is needed, so the interleaved
second array may even slow down the memory accesses, as data is loaded into the cache, that is
not needed in the program.

More performance can be gained by a method that is called compressed grid in [Wilke, 2002].
In this case, the memory required is not given by 2 ·N3 but by (N + 1)3, for a cubic problem with
N cells in each direction. This is achieved by storing data from two different time steps in the same
grid, overwriting the cells that are not needed for further calculations. For the lattice Boltzmann
method, the only moment that requires both grids is the stream step. Even when surface tension
and bubbles are included, the modifications can be handled during streaming. So after a single cell
has streamed all its distribution functions to the adjacent cells, these old values are never accessed
again. In other words, assuming an implementation with three loops i, j, k each running from 1 to
N , after cell (i + 1, j + 1, k + 1) has copied the distribution function from cell (i, j, k), the values in
cell (i, j, k) are never accessed again. So the new distribution functions of cell (i + 1, j + 1, k + 1)
could be written to cell (i, j, k), and so on. Then the streamed cell (i+2, j +1, k+1) can be written
to cell (i + 1, j, k). This requires an extra layer of cells, otherwise the cell (0, 0, 0) would access cell
(−1,−1,−1) that does not exist. So in the beginning the grid is stored in cells from (1, 1, 1) to
(N +1, N +1, N +1), after the streaming the updated values can be found in the cells from (0, 0, 0)
to (N,N,N). The next streaming has to copy the values back into the other direction.

A LBM implementation usually has many loops running over all distribution functions for each
cell. The easiest way to implement this, as shown in Chapter 2, is to use loops and arrays with
the constants needed for the computations, e.g. the lattice vectors or equilibrium function weights.
This implementation is close to the mathematical description, and as such easy to handle when
testing variations. However, all calculations with the lattice vectors contain many multiplications
with zero. Removing these terms can save many floating point operations. Loops that include
multiplications with the lattice vectors usually can skip the calculations with lattice vector 0. It is
(0, 0, 0) and as such does not contribute to the momentum density, among others. When calculating
the velocity in x-direction, only terms multiplied by lattice vectors with a non zero x-component
are necessary. In this example only ten floating point additions need to be done, instead of the
eighteen performed with a standard loop. On the other hand, this makes debugging and testing
much harder.

To have both the performance of unrolled loops and the good handling of fewer statements,
for the implementation of this thesis a small Perl program was written, that unrolls loops running
over the distribution functions on demand. This can significantly increase performance for simple
LBM programs. For this implementation, as will be shown later on (see Chapter 6), it is not that
important, as the free-surface calculations dominate the overall performance.

5.2 Multiphase implementation

The different phases that were explained in Chapter 4 are identified by an additional integer con-
taining the flags to identify the type of each cell. There are flags for fluid, interface and empty cells.
Furthermore boundary cells with slip or no-slip boundary conditions are distinguished. During the
initialization of the program, it is made sure that the layer of interface cells is not containing holes,
or has unnecessary interface cells. In each time step, during the streaming process, the cell masses
are updated for each interface cell. Once it is recognized that a cell is completely empty or filled
with fluid (when the mass equals the density) it is written into a list for later handling. The cell
flag can not be immediately updated, as the mass exchange process relies heavily on symmetry.
The mass that is added to a cell has to be subtracted from another one. If the cell flags from
the stream step and the mass update process differ, mass will be lost or generated. If this occurs,
distribution functions will be streamed into empty cells, or streamed from newly initialized cells
that were not taken into account during mass exchange calculation into existing cells. Furthermore,
the cell masses usually don’t exactly reach zero or the density of the cell during an update. Empty

CHAPTER 5. IMPLEMENTATION 31

G

F

I

F

F

F

I I

I I+ I

G G G

G

G

G

F F F F

I

G

G

G

F

I

F

F

F

I I

I I

G G G G

F F F F

I

G

G

F

I I

G

F

I

F

G

F

F

G

F

G

F

G

F

F

G

F

I

F

F

I

F

F

F F F

F

F

F

I

F

I+ I+

I+

I I I I

F F

F

I

F

I+

G G G G G G

G G G G G G

G

F

I

F

G

G

F

I

F

G

G

F

I

F

G

G

F

I

F

G

F

I

G

G

F

I

G

G

G

F

I

F

G

F

I

F

F F F F F F FF

F F F F F F FF

G

F

I

G

G

G

F

I

G

G

F

G

G

F

G

G

F

G

G

F

I

G

G

G

F

I

G

G

G

F

I

G

G

I IF

I- I- I-

I-

G

F

I

G

G

G

F

I

G

G

F

G

G

F

G

G

F

G

G

F

I

G

G

G

F

I

G

G

G

F

I

G

G

I II

G

G G G

F

F

I

G

I

a) b) c)

G F

I

I+

I-

gas cell

interface cell

fluid cell

invalid cell

full interface cell

empty interface cell

cell that changes
type in the next
step

an interface cell fills, resulting

in an invalid interface cell

four interface cells fill,

the red fluid cell has no

neighbors to transfer the

excessive mass to

four interface cells empty,

the red gas cell has no

neighbors to transfer the

negative mass to

Figure 5.2: Figure a) shows how invalid interface cells can result from standard cell type changes.
b) and c) illustrate cases where the mass from an interface cell cannot be correctly distributed to
neighboring interface cells.

cells will usually have masses below zero, and filled cells more than the density of this cell would
allow. This mass difference, be it positive or negative, has to be distributed among the surrounding
cells during reinitialization.

Thus, during the stream step, the new mass values for each cell are calculated. Filled and
emptied cells are stored in a temporary list without changing any cell flags. Then the streaming and
distribution function reconstruction, as well as the collision are performed. When this is finished,
the cell lists are processed. First the surrounding interface cell layer is constructed, which means
that for empty cells the adjacent fluid cells are changed to interface cells, as are all empty cells next
to filled cells. This is done before the cells in the lists are changed or the mass is distributed, to keep
the symmetry of the method. Otherwise, for a row of neighboring interface cells are full or empty,
each cell would have a different surrounding when some of it’s neighbors are already updated. Care
has to be taken when interface cells, that are needed as surrounding layer for filled interface cells,
should be deleted. This would result in a hole in the interface layer – thus, the cells around new
fluid cells are marked with an extra flag to prevent deletion.

When all cell flags are correctly initialized, the mass difference of the cells to be changed is
calculated and distributed to the surrounding interface cells. For emptied cells the negative mass is
added to the neighbors, while for filled cells, the difference between the density calculated from the
distribution functions and the mass of the cell is considered. Still it can occur that empty interface
cells should be deleted, but the surrounding cells empty as well, so that some cells do not have any
neighbor to distribute the negative mass to (see Figure 5.2). The same can happen when a region
of interface cells all fill at once. Some cells may not have any interface neighbors, as all surrounding
cells are also changed to fluid cells in the same step. These cases rarely occur, but need to be
recognized, although the mass difference cannot be easily handled. In the current implementation
this mass is stored and distributed to all interface cells in the domain in the next step. This is
computationally fast and does not destroy any symmetry. Furthermore the mass that is added to
the cells this way is usually too small to immediately affect the simulation.

32 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

3D scalar field 8 adjacent values forming a cube intersection points with isosurface χ=0.5 triangulation

P1

P1

P1

P1

P1

P1P1

s(x1,y1,z1) s(x2,y1,z1)

s(x1,y2,z1)

s(x1,y2,z2) s(x2,y2,z2)

s(x1,y1,z2)
s(x2,y1,z2)

s(x2,y2,z2)

1.0

0.0

0.6

0.7

1.0

1.0 0.8

1.0

Figure 5.3: The marching cubes algorithm proceeds by choosing eight adjacent values from a given
three-dimensional scalar field, triangulating the points of intersection with the isosurface.

5.3 Surface reconstruction

To apply Equation 4.3 during the stream step, the curvature for each cell has to be calculated.
This means, that the curvature along two normal sections is needed, which requires at least three
points for each section. An easy way to reconstruct a surface is the marching cubes algorithm that
is known from volume visualization (see [Watt and Watt, 1992] and [Lorensen and Cline, 1987]).
It can be used to triangulate the isosurface given by a regular three dimensional scalar field. The
algorithm proceeds by considering eight scalar values forming a cube (see Figure 5.3). It is assumed
that the scalar values change linearly along each edge. A point along an edge on the isosurface for a
given value χ can then be easily calculated. For edges from ~p1 to ~p2 that have scalar values larger,
respectively smaller, than χ (s1 and s2), the intersection ~x is given by:

~x = ~p1 +
χ − s1

s2 − s1
(~p2 − ~p1) (5.1)

These points can be calculated for all edges intersecting the isosurface. A standard marching
cubes implementation would then proceed by building the triangles from these points. In total
28 = 256 different possibilities for edge intersections of a cube can be identified (each of the eight
corners is either inside or outside the isosurface). All 256 cases of triangulations can be precalculated,
and together with the exact intersection points be used to build a isosurface triangulation without
holes.

For this LBM implementation, the fill grade of each cell (mass divided by the density) was taken
as a scalar field with an isosurface at χ = 0.5. The assumption of linear interpolation between the
neighboring fill grades is not correct, still the points on the isosurface successfully approximate
the contour of the fluid. And as the marching cubes algorithm can be implemented with good
performance, it was chosen as surface reconstruction algorithm in this case. Other algorithms
compute higher order surfaces through the scalar values and could be used to calculate the surface
intersections with higher precision, but these algorithms require much more operations and are
significantly slower.

Although it might be nice to have a triangulation for visualization of the fluid, it is not needed
for calculating the surface tension. As the edges on which isosurface intersections are calculated are
aligned with the coordinate system axes, the easiest way to find points on plane for the surface is to
use axis aligned planes. Depending on the direction of the normal vector of the surface, which can
be approximated by computing the gradient of the scalar field, either the xy-, the xz- or yz-plane
are searched for points in the neighborhood of the current cell.

The edges shown in Figure 5.4 are searched for points. Since often more than three points are
found, some of them have to be discarded. In the current implementation the two points that are
closest to each other are identified, and the point with the smaller distance to one of the remaining
points is discarded. This ensures that the three points taken for curvature calculation are spread
as far as possible, as numerical errors increase when the points are close together.

The other special case that can occur is, when there are too few points to calculate the curvature.
This happens when the surface passes through the far corner of a region searched for points, as
shown in Figure 5.5. In this case, the direction and amount of curvature cannot be correctly

CHAPTER 5. IMPLEMENTATION 33

YZ-PlaneXZ-Plane XY-Planex

y
z

LBM cell to calculate
curvature for Y edge to search for points Z edge to search for pointsX edge to search for points

Figure 5.4: Depending on the normal direction at the cell, different planes are searched for points
to calculate the curvature with.

estimated from the information in the shown region. The only reliable way to handle this, is to
take the curvature calculated for the neighboring cell that contains surface intersections.

5.4 Problems

The implementation of this algorithm is required to deal with several difficulties. One important
aspect is that fluid in interface cells that do not fill, is not able to move through the lattice. As the
creation of new interface cells only occurs when cells completely fill or empty, an amount of fluid
that is not able to fill a cell will not trigger the initialization of new interface cells. This effect is
often caused by high lattice velocities, hence it can be reduced by choosing a parametrization that
has sufficiently small time steps.

Another problem can be caused by regions of interface cells in the fluid. As the distribution
function reconstruction is only done in the direction of gas cells, for adjacent interface cell regions no
distribution functions are reconstructed. This means that no bubble pressure or surface tension can
be applied to these cells, preventing them from quickly being filled. This effect could be mitigated
by a distribution function reconstruction that also takes the normal of the surface into account.

Generally, care has to be taken with cell type changes. Unnecessary cell initializations can
cause uncontinuous changes of the velocities, which results in disturbances of the fluid, especially
for relaxation times close to two. In the worst case these changes trigger new cell type changes,

cells of the LBM grid

1.01.0

1.0 0.8 0.2

0.6

1.0 1.0 1.0

? ?

LBM cell to determine
curvature for

marching cubes grid
with fill grade values

Figure 5.5: In the middle an completely undecidable configuration for calculating the curvature of a
cell is shown. Depending on the surrounding fluid, the curvature can be either positive or negative.

34 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

leading to a ”flickering” of the cell types. This could completely dominate the behaviour of the
fluid, causing ghost velocities or deceleration of cell velocities. With the implementation described
in this chapter these effects were minimized, but can still occur for high ω values.

CHAPTER 5. IMPLEMENTATION 35

fluid surface
as scalar field

determine surface normal

normal vector

choose first plane to
calculate curvature in

choose second plane to
calculate curvature in

x

y
z

xy-plane yz-plane

x

y

z

y

z

y

x

y

find surface points find surface points

calculate 2D curvature calculate 2D curvature

R2

R2

R2R1

R1R1

apply Meusnier correction
and calculate average curvature

Figure 5.6: Here the whole process of curvature calculation that is necessary for each LBM cell is
illustrated.

36 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

CHAPTER 6. RESULTS 37

Chapter 6

Results

This chapter presents the results of simulations with the method described in the previous chapters
for various problems. The images from this chapter were created with the raytracer that is described
in more detail in Chapter 7.

Animated sequences for the following images can be found on the enclosed CD or at the websites
[Thürey, 2003; Pohl, 2003].

6.1 Free surface

The standard test problem for free surfaces is the breaking dam problem. It can be imagined as
a container where a section of the domain is filled with fluid and seperated from the rest by an
obstacle. The obstacle is instantaneously removed, and the fluid, previously at rest, will start to
swash towards the other wall due to the gravitational force. Here a setup is used, where 1

3 of the
width of the domain is filled up to a height of 3

4 with fluid. A relatively small domain of 503 cells
is used.

Several time steps of three animations can be seen in Figure 6.2. The difference between the
three columns are the boundary conditions. For the first column, free-slip boundary conditions were
used, while no-slip boundary conditions were set for the second one. The third column again shows
a simulation with free-slip boundary conditions. In contrast to the first, however, it also includes
surface tension.

Especially for a small grid like the one used in these simulations, the effect of the boundary
conditions is strong. The results show the behaviour expected for the described setups. The free-
slip boundary conditions allow a fast movement along the floor, and the fluid stays in motion for
a long time. The no-slip boundary conditions, on the other hand, slow down the motion – there
is almost no swashing, and the fluid quickly comes to rest. It can also be seen that parts of the
fluid remain ”sticking” to the wall, flowing downwards much slower than the fluid further away
from the wall. While the simulation with surface tension shows the same overall motion as the first
simulation, the strong surface tension removes all sharper edges of the fluid surface. The waves
have rounder corners than in the first case, and when the fluid comes to rest, the surface has a
visible bulge in contrast to the flat fluid surface of the simulation without surface tension.

6.2 Falling drops

In Figure 6.3 two simulations of a drop falling to the ground are shown. The images to the left
are from a simulation with no surface tension, while the two columns to the right show pictures of
the same drop of fluid with surface tension. The drop without surface tension slowly spreads over
the floor, which is no-slip for the two simulations. The drop with fluid tension, however, is pulled
together again as the surface tension applies an especially strong force at the flat edge of the drop
towards the middle. The fluid reaches a stable form when the gravitational force and the surface
tension are balanced. It can be seen that the surface tension is not completely symmetric, as the
form of the drop, when it is pushed towards the middle, is not perfectly round. This effect is mainly

38 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

caused by a restriction of the maximal force applied due to the surface tension for stability of the
LBM, and might be reduced by choosing a parametrization with smaller time steps.

6.3 Rising bubbles

The problem setup of Figure 6.4 is interesting for future foaming simulations. Each of the three
columns show a rising bubble in a container. Although the pictures show equally large bubbles,
the LBM resolution is different each time, resulting in differently sized bubbles. The diameter of
the bubble to the left is 18 LBM cells, for the bubble in the middle 24 cells and the bubble to the
right has a diameter of 36 cells. An increased bubble size results in an increased ascendency – the
pictures at the bottom show that the largest bubble already breaks through the surface, while the
two smaller bubbles are still several cells below it. The larger bubbles also show a stronger inwards
bulge at the lower end, that is caused by the increased downward flow speed around the bubble.

A problem with the reinitialization of the cell types can be seen at the lower edges of the bubbles,
especially for the two larger bubbles. When the speed of the rise is too large, the algorithm is not
able to correctly empty the corresponding cells anymore, resulting in small regions of interface
cells that are not connected to the main bubble. As the algorithm is currently not performing a
segmentation of the domain to identify new bubbles, these smaller bubbles are treated as if they
were still connected to the main bubble, and as such have the same pressure.

6.4 More drops and breaking dams

The images from Figure 6.5 and Figure 6.6 both show settings similar to those of Section 6.1 and
Section 6.2. In the first case four drops of fluid with surface tension fall on a rectangular obstacle.
Note that the four drops are falling from different heights, resulting in an irregular splash when
they hit the obstacle.

The second breaking dam from Figure 6.6 has a much higher viscosity than those from Figure 6.2
and an increased gravity. This results in a more turbulent and asymmetric flow. Due to the high
ω-parameter even small discontinuities from the cell type reinitializations are amplified. Due to the
high strength of the external force, some distribution function even become smaller than zero and
have to be reset to preserve stability. However, this effect is negligible for a simulation of metal
foams, as the forces acting upon the fluid are much smaller in this case.

6.5 Six rising bubbles

A simulation of six bubbles is shown in Figure 6.7. The flow between the bubbles causes coalescence
before they break through the surface. Here again the effect of large lattice velocities causing left
behind interface cells can be seen. Due to the good resolution of the simulation (90 × 120 × 90
cells) the surface tension causes a realistic burst of the bubbles at the fluid surface. In the images
from later time steps, the effect of a missing segmentation can be seen. The small bubbles left in
the fluid are connected to the atmosphere since the main bubble they belonged to broke through
the surface. Hence, once another bubble touches one of these small bubbles it is treated as if it is
connected to the atmosphere and will not cause an increased pressure when it is compressed.

6.6 A validation experiment

To validate the results of this thesis, a small breaking dam was built. It has the a length of 30cm
and depth and height of 25cm. From Section 4.5.1 it is known that a realistic representation of a
domain that big would require too much memory for any current workstation. Hence, a resolution
of 100× 83× 83 cells was chosen that only requires 300 MB of memory. To retain the stability – a
parametrization with such a coarse resolution would require an ω of almost 2 – a higher visocisity
than water was used.

Figure 4.5.1 shows several time steps of the simulation (to the left) and photos of the real
breaking dam (to the right). While the overall shape of the wave is comparable, the coarse resolution
of the simulation lacks many turbulent details that are visible in the photos.

CHAPTER 6. RESULTS 39

6.7 Performance measurements

Although the algorithm has not been implemented with a focus on high performance several mea-
surements were performed to test various optimizations. The work distribution for a standard
breaking dam simulation run is shown in Table 6.1. It was measured using a Pentium 4 with
2.4GHz and 1GB of RAM. The program used to measure these numbers performs a seperate sweep
through the lattice for each of the listed steps. The streaming step takes up almost 40% of the
running time. This is caused by the memory accesses to the neighboring cells and the reconstruction
of the free surface distribution functions, which is also performed during streaming. The collide
step takes almost as much time due to the complicated calculations that are performed for the local
equilibrium distribution functions. The calculation of the mass exchange and the calculation of the
points on the isosuface both need about 10% of the total time.

In Figure 6.1 several graph of performance measurements can be seen. The left column shows
the results for the standard version that was also used to create Table 6.1. The numbers were
measured with PAPI [Mucci et al., 2003] and show the millions of floating point operations per
second (MFLOPS) and the level 1 and level 2 data cache misses per LBM cell update. The three
lines show different problems that were used. The first setup has a domain completely filled with
fluid, so no additional work has to be done for the handling of interface cells, except for checks of
the cell type which were not removed from the code. The second version is a breaking dam problem
with a free surface, the third one also applies surface tension. From the level 2 data cache misses it
can be seen that the problems quickly become too large to fit into the cache, leading to increased
numbers of cache misses. These misses do not increase further once the lattice is too large to allow
the reuse of any data in the cache (a grid size of around 483 in this case). It can be seen that the
overall performance, with an average of 90 MFLOPS for the version with surface tension, is very
low compared to the 4800 MFLOPS the CPU would theoretically be able to perform.

As the implementation used for these experiments was written to allow the testing of different
algorithms, it performs each step of Table 6.1 in a seperate sweep over the grid. In total four sweeps
are necessary: for streaming, collision, mass exchange and bubble volume calculation. These four
steps could be combined, fusing the four different loop nests into a single loop over all cells, to
hopefully increase the low performance. First the mass exchange is calculated, then streaming with
distribution function reconstruction and bubble volume calculation can be performed. The streamed
distribution function can then be collided and written to the other lattice. This optimized version
was also measured with PAPI – the results can be seen in the right column of Figure 6.1. Although
for larger grids the number of level 2 data cache misses pert cell are almost half the number of those
for the standard version (35 instead of 60), the MFLOPS performance does not increase. On an
average it slighty decreases for the optimized version. This can be explained by other effects that
were not measured, but seem to dominate the overall performance. Especially the large number
of conditional statements in the loop body may lead to many branch mispredictions and pipeline
flushes. Furthermore the huge loop body (more than thousand lines of C++ source code in this
case) may exceed the instruction cache, and lead to an increased number of cache misses there.

It can be concluded that an obvious optimization like the loop fusion performed here is not
enough to really speed up a complex code like this. It will be a topic of further research to create
an optimized implementation (possibly in FORTRAN) for the SR8000.

Workload percentage: % Program module:

39.4 % Streaming
34.0 % Collision
9.8 % Mass exchange
9.6 % Isosurface reconstruction
7.2 % Initialization and other functions

Table 6.1: Work distribution of the LBM implementation for a breaking dam simulation run.

40 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

0

50

100

150

200

20 40 60 80 100 120 140

P
A

P
I:

 M
F

L
O

P
S

Problem size

PAPI mffslbm − Event MFLOPS

LBM
+ free surface

+ surface tension

0

50

100

150

200

20 40 60 80 100 120 140

P
A

P
I:

 M
F

L
O

P
S

Problem size

PAPI mffslbm − Event MFLOPS

LBM
+ free surface

+ surface tension

0

50

100

150

200

250

300

20 40 60 80 100 120 140

P
A

P
I:

 L
1
 C

a
c
h
e
 M

is
s
e
s
/#

 F
lu

id
 C

e
ll

s

Problem size

PAPI mffslbm − Event L1 Cache Misses/# Fluid Cells

LBM
+ free surface

+ surface tension

0

50

100

150

200

250

300

20 40 60 80 100 120 140

P
A

P
I:

 L
1
 C

a
c
h
e
 M

is
s
e
s
/#

 F
lu

id
 C

e
ll

s

Problem size

PAPI mffslbm − Event L1 Cache Misses/# Fluid Cells

LBM
+ free surface

+ surface tension

0

10

20

30

40

50

60

20 40 60 80 100 120 140

P
A

P
I:

 L
2
 C

a
c
h
e
 M

is
s
e
s
/#

 F
lu

id
 C

e
ll

s

Problem size

PAPI mffslbm − Event L2 Cache Misses/# Fluid Cells

LBM
+ free surface

+ surface tension

0

10

20

30

40

50

60

20 40 60 80 100 120 140

P
A

P
I:

 L
2
 C

a
c
h
e
 M

is
s
e
s
/#

 F
lu

id
 C

e
ll

s

Problem size

PAPI mffslbm − Event L2 Cache Misses/# Fluid Cells

LBM
+ free surface

+ surface tension

Figure 6.1: Measurements of the MFLOPS, level 1 and level 2 data cache misses per cell update
for various problem sizes on a Pentium 4 with 2.4 GHz and 4GB of dual-channel DDR-SDRAM
(using PAPI and GCC 3.2.2). The graphs to the left show the original unoptimized version, while
the graphs on the right are for the program version with fused loops.

CHAPTER 6. RESULTS 41

Figure 6.2: The standard breaking dam problem. To the left with free-slip boundary conditions,
with no-slip walls in the middle and to the right with free-slip walls and surface tension.

42 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Figure 6.3: Two drops falling onto a no-slip floor. To the left without, and to the right with surface
tension.

CHAPTER 6. RESULTS 43

Figure 6.4: Three differently sized rising bubbles.

44 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Figure 6.5: Four drops of fluid falling onto a square obstacle.

Figure 6.6: Another breaking dam with low viscosity and strong gravitational force.

CHAPTER 6. RESULTS 45

Figure 6.7: Six rising bubbles in a container with fluid.

46 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Figure 6.8: Comparison between a simulation (to the left) and a real breaking dam (to the right).

CHAPTER 7. VISUALIZATION 47

Chapter 7

Visualization

This chapter will explain the two different types of visualization that were used during the LBM
implementation. First the simpler and quicker visualization using OpenGL will be described. This
is useful for interactive evaluation of the simulation and fast debugging of the program. After that
the difficulties of creating realistic images from simulation data will be explained in more detail.

7.1 Real-time visualization with OpenGL

The OpenGL library is a standard tool for the creation of fast and portable three-dimensional
visualizations. Although several libraries focusing of scientific visualization exist (like OpenDX and
Tecplot), the visualization of this implementation is handled by a module in the program due to
the simplicity of OpenGL and flexibility gained by a self-written solution. Several screenshots of
the OpenGL module can be seen in Figure 7.2. The small red cube visible in most pictures is the
cell selector, that can be moved within the grid to select specific cells, and display more information
for these.

For quick evaluation of the free surface simulation, the marching cubes implementation from the
surface tension can be used. As the points are generated for the curvature calculation, these can
be used to create the triangles used for the OpenGL visualization without much overhead. This
furthermore allows easy debugging of the surface tension calculations, as the points used for a circle
reconstruction are the same that are used for the triangles. Additionally particles in the fluid can
be easily displayed as dots or, for showing their previous positions, as lines.

The overall performance of the simulation is in most cases not affected by the OpenGL visual-
ization. The fluid is only redrawn in certain intervals to display the progress of the simulation. This
does not slow the simulation down. Other possible methods, like continuing the user interactions
with separate processes for simulation and visualization on the other hand, would decrease the
performance. To prevent this, the triangulations are stored, and can be played with a desired frame
rate after the simulation is finished.

7.2 Realistic visualization with raytracing

The visual appearance of transparent fluids is mainly determined by the reflection and refraction of
light at the fluid surface. Depending on the refraction index of the material, this effect is more or less
strong. The background as seen through the material is distorted, as are photons that illuminate
other surfaces around the fluid. Due to this light focussing brighter patterns are usually visible
around fluids or other reflecting objects that are known as caustics. To capture these effects when
visualizing the simulation of fluids, raytracing is used, as this technique is nowadays established for
the creation of realistic images.

The algorithm works by tracing rays from an eye or camera into a virtual scene, calculating the
illumination for each of the points found along the ray. This is the inverse of the usual process, where
photons are emitted from light sources, illuminating certain objects scattering the photons until
they hit a camera or eye – which is justifiable by the bidirectionality of the underlying equations.
For details on raytracing refer to [Glassner, 1989] and [Foley et al., 1995]. Many professional (and

48 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

ray tracing photon tracing

Figure 7.1: The left pictures shows three different rays traced from the eye into the scene are shown.
The green ray directly hits a diffuse surface (the floor), the color can be calculated from material
properties and light source position. The blue ray hits a fluid surface, a refracted and a reflected
ray are recursively traced on. For the red ray, many new rays need to be spawned – note that
reflections can also occur on the inside of an object. To the right photon mapping is illustrated (see
Section 7.5).

often expensive) raytracers are currently available (e.g. mental ray from mental images, Houdini’s
Mantra or Pixar’s Reyes renderer Renderman), as are open source raytracers like Persistance of
Vision (POV), the Blue Moon Rendering Toolkit (BMRT) or Blender. As it turned out that all of
these were lacking flexibility, a self-developed raytracer was implemented with efficient algorithms
for the effects that are important when visualizing fluids.

Raytracing is a recursive process, as the rays sent into the scene can be traced on into a new
direction upon intersection with an object. This can be used to easily implement effects like reflec-
tion and refraction. The color found for the new rays is simply weighted and used as color for the
initial ray. This is also the main difference between using e.g. OpenGL or a raytracer. OpenGL
directly draws all objects with a given color – for reflections or refractions, a preprocessing step
has to be performed. By using raytracing these effects require only small changes. The penalty of
the increased realism is the additional time required to create an image. While modern graphics
hardware is able to display thousands or even millions of triangles many times a second, images
created with raytracing can take hours to compute. Both techniques can be combined well, by
using OpenGL to quickly display, evaluate and parametrize the simulation. Once the simulation
proceeds as desired, an image sequence can be created with raytracing.

For the surface description of the objects in the scene, only triangles are used as basic primitives.
These are easy to store and intersections can be computed efficiently. The intersection calculations
of rays with the scene determine the performance of the image creation. As a scene can contain
millions of triangles, not all can be intersected for each ray that is traced. Binary space partitioning
trees are used to reduce the number of triangles that need to be intersected for each ray.

7.3 Reflection, Refraction and Fresnel

As the reflectivity and transparency of a fluid also depends on the angle between surface and
ray, Fresnel’s law can be used to calculate the necessary coefficients. A visually corresponding
approximation is given by the following formula from Blinn (see also [Blinn, 1977]):

R = (1 − ri)
4 + (~d · ~n)5 (7.1)

The reflectivity coefficient at the surface for a ray leaving it in direction ~d is then R. Hence, the
refractive coefficient is (1 − R). In Equation 7.1 the surface normal is denoted with ~n, and ri is

CHAPTER 7. VISUALIZATION 49

the refraction index of the material. The difference between simple reflection, refraction and the
more physically correct use of Equation 7.1 can be seen in Figure 7.3. The visual effect of a more
realistic transparent material with Fresnel-coefficients is demonstrated in these four pictures. The
sphere to the left is completely reflective, mirroring the floor and the white background usually not
visible in the images. The image on its right side is a completely transmissive sphere, that is slightly
colored. As the material has the same refraction index as the ”air” around it, the rays pass straight
through it. The next picture is that of a sphere where the reflective and refractive coefficients are
calculated with Equation 7.1. Note how the reflectivity increases as the rays hit the sphere surface
at a lower angle. The last picture to the right is similar to it’s left neighbor, the only difference
being the refraction index of 1.15 instead of 1.0. The light is focused on the floor, and the rays
passing through the sphere are distorted.

While this calculation of the Fresnel-coefficients works fine for rays passing from a medium with
low refraction index, like air which has approximately 1, into a medium with higher refraction index,
problems can occur when this ray leaves the object again. In some cases, especially for lower angles,
total reflection can occur, which means that Equation 7.1 is not applicable any more, and the ray
is completely reflected on the inside of the object. More generally this is possible when the light
passes into a medium with lower refraction index. For total reflection the reflection coefficient is
simply set to one and no refraction is considered.

7.4 Soft shadows

In nature a light source usually has a certain extent. For a raytracer, the easiest way to implement
a light source is to use a infinitely small point, from which light is sent in all directions. This
produces the typical shadows for raytracing with sharp and clearly visible edges. In nature this
only occurs when a strong light source is far away from the shadow casting object. Usually shadows
have a penumbra that result from regions that are only partly illuminated by the light source (see
Figure 7.4). The left picture shows a simple sphere lying on a plane illuminated by a light source
in the far left corner. Note how the soft edge of the shadow is smaller to the left side, where the
sphere edge casting the shadow is closer to the plane. The two images to the right show the same
scene – a rectangular box with a sphere hovering above it, the latter of which is not really visible
on the pictures. For the picture in the middle the light source is close to the sphere resulting in
a very soft shadow to the left. The light source was moved further away from the objects in the
rightmost image, resulting in overall sharper shadow edges. The difference in the width of the
partly illuminated areas is still similar to that of the middle picture.

These soft shadows can be computed by sampling a light source with an area a certain number
of time. So called shadow rays are casted from a surface point in the direction of the light source
to determine the visibility. For example rectangular light sources can be used, and shadow rays
traced N times along each side, to determine how much of the light source is visible from a point
on a surface. Hence, this requires N2 shadow rays instead of only one for a point light source. This
increases the time for raytracing by an order of magnitude, as usually relatively large numbers for
N , e.g. N = 8, are necessary for shadow edges without aliasing.

A technique known from real-time visualization is shadow mapping. In a separate rendering
pass, the distance from the light source into the scene is stored in a map. During raytracing, the
distance to the light source and the corresponding value in the shadow map can be compared. If
the shadow map value is smaller, the light source is not visible. Although care has to be taken
when choosing the shadow map resolution or evaluating the depth comparisons, shadow maps can
be computed quickly with raytracing. Moreover, shadow maps allow filtering, which produces soft
shadows that, although not physically correct, are visually more appealing than the sharp edges of
raytraced shadows – and are at times even quicker to compute.

7.5 Caustics with photon mapping

The limitations of the raytracing algorithm become apparent when more complex effects like caustics
or color bleeding are desired. When a ray hits a surface that could contain a caustic, the correct
way to compute these would be to integrate the light over the hemisphere at the intersection point
from all reflecting or refracting objects, repeating this process for each intersection. This would

50 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

be necessary for all diffuse objects to correctly visualize color bleeding instead of caustics. Global
illumination algorithms that can compute these effects are for example global illumination algorithms
or Monte-Carlo raytracing. For this implementation photon mapping was used. It is significantly
faster than the other methods in most cases, and can be easily integrated into an existing raytracer,
as it requires similar calculations. The photon mapping technique is described in more detail in
[Jensen, 2001].

It is basically a preprocessing step, that performs ”physically correct” raytracing. So for all
light sources a certain number of photons are traced into the scene, reflected or refracted at the
intersection points, and finally stored when they hit a diffusely reflecting surface. These stored
photons are organized as a kd-tree, that allows efficient retrieval of photons in a certain region.
During raytracing, for each surface intersection a fixed number of photons, which are closest to the
intersection point, are retrieved via the kd-tree, and averaged to compute the illumination that is
not already computed from the raytracing algorithm.

In the current implementation, a photon map is used only for visualizing caustics, as other
global illumination effects are not as important for fluid visualization. To speed up the initial step
of tracing photons into the scene, a technique similar to that described in Section 7.4 is used. To
identify the regions that contain objects which could produce caustics, a map is precomputed to
quickly select those photons which move into a reasonable direction. This is especially useful when
the light source is far away from objects that produce caustics, while it will only slow the process
down a bit when the light source is for example placed into a glass ball.

As the resolution of these caustics maps can be fairly low (it should just roughly capture the
caustics producing geometry), and only a boolean value needs to be stored, they can be computed
quickly with low memory requirements.

Pictures comparing raytraced images of caustics with different numbers of photons can be seen
in Figure 7.5. The number of photons increases from left to right and from top to bottom, the
exact numbers can be found in the table below the images. The number of photons gathered for
each diffuse intersection is increased together with the number of photons shot, to guarantee a noise
free picture. While the number of photons increases by a factor 10 for each picture, the number of
gathered photons is increased by a factor of roughly 4. The number of photons directly influences
the time needed to store enough photons in the scene, while the effects of increased photon gathering
numbers significantly lengthens the rendering time only for the last two pictures. It can be seen
that an increased number of photons enhances the sharpness of the caustics, but of course increase
the time required to create the image. However, the visual importance of caustics for a realistic
appearance becomes apparent.

Picture Photons shot Photons gathered Photon tracing time Ray tracing time

1 0 0 0s 253.3s
2 1.000 50 2.8s 268.3s
3 10.000 200 3.7s 292.1s
4 100.000 800 27.6s 406.8s
5 1.000.000 2.400 273.9s 810.1s
6 10.000.000 10.000 2870.6s 3308.1s

Table 7.1: Numbers for shot and gathered photons that were used to generate Figure 7.5.

CHAPTER 7. VISUALIZATION 51

Figure 7.2: Several screenshots from the OpenGL visualization. The pictures in the upper row show
several time steps from a running breaking dam simulation. The bottom row shows (from left to
right) a view of the velocity field, the particle visualization and the fill levels.

Figure 7.3: From the left to the right, a completely reflective sphere, a transmissive sphere and
two spheres with Fresnel-coefficients for reflection and refraction can be seen. Only the rightmost
sphere has a refraction index different to 1.

Figure 7.4: Two simple scenes demonstrating penumbras are shown in these pictures (a single
sphere and a sphere only partly visible above a rectangular box). For the rightmost picture the
light source was moved further away from the scene.

52 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

1. 2.

3. 4.

5. 6.

Figure 7.5: Images for the same scene with different numbers of photons shot and gathered can be
seen. The exact numbers are shown in Table 7.1.

CHAPTER 8. CONCLUSIONS 53

Chapter 8

Conclusions

This thesis has presented a Lattice Boltzmann Method for a single fluid phase with a free surface
and surface tension. The targeted field of application is the simulation of metal foams to enhance
the production process. The fluid simulation uses the three-dimensional D3Q19 lattice and the
LBGK method. The algorithm works with a topology representation of three different cell types –
fluid, interface and gas cells. As the gas cells are only needed to track the bubble volumes, additional
work is necessary at the interface cells. The missing information from the gas can be reconstructed
with the fluid velocity and the bubble density. Furthermore it is necessary to explicitly track the
mass at the interface cells, and reinitialize the cell types whenever interface cells are full or empty.
Here the correct order of cell type changes is necessary to prevent disturbances of the fluid. The
surface tension is calculated by reconstructing points on the isosurface using the marching cubes
algorithm. For each interface cell two circles are constructed, that each touch three points of the
isosurface in the neighborhood of the cell and lie in a coordinate plane. The average curvature is
then used to apply a force on the fluid surface according to strength and direction of the curvature.
For visualization a real-time OpenGL viewer and a raytracer with soft shadows and caustics were
implemented.

As has been shown in Chapter 6, the version of the LBM developed in this thesis is applicable
to a wide range of problems, yielding good results. The basic LBM is retained, although care
has to be taken when handling the different cell types. When velocities in the lattice get too
large, interface cells may not fill or empty fast enough and thus enhancements to the free surface
boundary conditions may still improve the quality of the simulations. The surface tension calculation
using marching cubes is relatively fast. The correct selection of points to prevent ”flickering” and
alternative isosurface generations may, however, require additional overhead, and are a topic of
future research. It has been shown that the realistic parametrization of the LBM is relatively
difficuilt, and correct paramertizations often would require large numbers of cells, resulting in huge
memory requirements. This is, however, not problematic for simulations of metal foam, as these
only require smaller spatial scales without strong external forces. The algorithm is especially well
suited for simulations of foams, as the huge volumes of gas don’t require additional computations.

It could be shown that the LBM solver of this thesis provides all necessary basic functionality
for foaming simulations – the motion of the liquid metal phase is correctly reproduced. Future work
will additionally include the gas diffusion, separation pressure and temperature into the program.
It may even be possible to simulate the whole cooling process including the development of capil-
lary cracks in the metal foam. For simulations with the SR8000, additional optimizations and an
implementation in FORTRAN, also handling the domain decomposition and load balancing, will
be necessary.

54 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

CHAPTER 9. ACKNOWLEDGEMENTS 55

Chapter 9

Acknowledgements

I would like to thank Prof. Dr. Ulrich Rüde and Thomas Pohl for the support. Furthermore
Dr. Carolin Körner, Markus Kowarschik, Michael Thies, Jan Treibig and Thomas Zeiser helped me
with various questions.

Thanks also to Mario Fritz, Harald Köstler, Michael Martinides and Stefan Thürey for the
corrections.

56 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

LIST OF FIGURES 57

List of Figures

1.1 Three samples of metal foams produced at the WTM in Erlangen, the photos were

taken by Michael Thies. 1

1.2 Several time steps of an animation from [Arnold et al., 2000]. A metal foam evolves

in a container with an horizontal obstacle. 2

2.1 The 19 distinct velocities of the D3Q19 model point to every face and edge of a cube

around the cell, except for the 8 corners. For comparison the D2Q9 model is shown

to the right; both models have speeds of length 0, 1 and
√

2. 6

2.2 Each two pictures show the particle distribution functions of a D2Q9 LBM grid before

and after streaming. To the left the distribution functions of a single cell can be seen,

while the right pictures show four different LBM cells. 6

2.3 During the collide step the distribution functions from the stream step are used to

calculate the velocity in each cell, which is necessary for the local equilibrium distri-

bution functions. Thse are weighted with the parameter τ to yield the distribution

functions for the next stream step. 7

2.4 No-slip obstacle cells directly reflect the incoming distribution functions. For free-

slip boundary conditions, the distribution functions are reflected along the normal

direction of the boundary. 8

2.5 Four time steps from a two-dimensional lid driven cavity simulation. 10

3.1 This picture shows the difference of a Lagrangian (to the left) and a Eulerian de-

scription (to the right). The first case considers fluid elements with certain properties

such as mass and velocity, whereas the Eulerian description consists of a continuous

field of values for the density and velocity. 12

4.1 Each LBM cell is either a fluid, interface or gas cell. A fluid configuration is subdi-

vided into cells, which are completely, partly and not filled with fluid. 24

4.2 The curvature can be calculated along any curve C on the surface S, as shown to on

the left. To the right, two sections through S can be seen, one containing the normal

of the surface ~n, while the other is rotated by the angle α. 26

5.1 The datalayout for an LBM implementation can consist of either: distinct arrays

for each distribution function type, two arrays containing all necessary distribution

functions for each cell in a struct or a single array with both sets of distribution

functions. 29

5.2 Figure a) shows how invalid interface cells can result from standard cell type changes.

b) and c) illustrate cases where the mass from an interface cell cannot be correctly

distributed to neighboring interface cells. 31

58 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

5.3 The marching cubes algorithm proceeds by choosing eight adjacent values from a

given three-dimensional scalar field, triangulating the points of intersection with the

isosurface. 32

5.4 Depending on the normal direction at the cell, different planes are searched for points

to calculate the curvature with. 33

5.5 In the middle an completely undecidable configuration for calculating the curvature

of a cell is shown. Depending on the surrounding fluid, the curvature can be either

positive or negative. 33

5.6 Here the whole process of curvature calculation that is necessary for each LBM cell

is illustrated. 35

6.1 Measurements of the MFLOPS, level 1 and level 2 data cache misses per cell update

for various problem sizes on a Pentium 4 with 2.4 GHz and 4GB of dual-channel

DDR-SDRAM (using PAPI and GCC 3.2.2). The graphs to the left show the original

unoptimized version, while the graphs on the right are for the program version with

fused loops. 40

6.2 The standard breaking dam problem. To the left with free-slip boundary conditions,

with no-slip walls in the middle and to the right with free-slip walls and surface

tension. 41

6.3 Two drops falling onto a no-slip floor. To the left without, and to the right with

surface tension. 42

6.4 Three differently sized rising bubbles. 43

6.5 Four drops of fluid falling onto a square obstacle. 44

6.6 Another breaking dam with low viscosity and strong gravitational force. 44

6.7 Six rising bubbles in a container with fluid. 45

6.8 Comparison between a simulation (to the left) and a real breaking dam (to the right). 46

7.1 The left pictures shows three different rays traced from the eye into the scene are

shown. The green ray directly hits a diffuse surface (the floor), the color can be

calculated from material properties and light source position. The blue ray hits a

fluid surface, a refracted and a reflected ray are recursively traced on. For the red

ray, many new rays need to be spawned – note that reflections can also occur on the

inside of an object. To the right photon mapping is illustrated (see Section 7.5). . . 48

7.2 Several screenshots from the OpenGL visualization. The pictures in the upper row

show several time steps from a running breaking dam simulation. The bottom row

shows (from left to right) a view of the velocity field, the particle visualization and

the fill levels. 51

7.3 From the left to the right, a completely reflective sphere, a transmissive sphere and

two spheres with Fresnel-coefficients for reflection and refraction can be seen. Only

the rightmost sphere has a refraction index different to 1. 51

7.4 Two simple scenes demonstrating penumbras are shown in these pictures (a single

sphere and a sphere only partly visible above a rectangular box). For the rightmost

picture the light source was moved further away from the scene. 51

7.5 Images for the same scene with different numbers of photons shot and gathered can

be seen. The exact numbers are shown in Table 7.1. 52

BIBLIOGRAPHY 59

Bibliography

Arnold, M., Thies, M., Körner, C., and Singer, R. (2000). Experimental and numerical investigation
of the formation of metal foam. Materialsweek.

Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). A model for collision processes in gases.
Phys. Rev., 94.

Blinn, J. F. (1977). Models of light reflection for computer synthesized pictures. Computer Graphics,
11:192–198.

Bogoliubov, N. (1962). Problems of a dynamical theory in statistical mechanics. In Studies in
Statistical Mechanics, Vol .1, Amsterdam, Netherlands. J. de Boer, G. E. Uhlenbeck.

Bouzidi, M., d‘Humières, D., Lallemand, P., and Luo, L.-S. (2001). Lattice Boltzmann equation on
a two-dimensional rectangular grid. JCP, 172(2):704–717.

Bronstein, Semendjajew, Musiol, and Mühlig (1999). Taschenbuch der Mathematik. Verlag Harri
Deutsch.

Buick, J. M. and Greated, C. A. (2000). Gravity in a lattice boltzmann model. Pysical Review E,
61.

Chen, H., Chen, S., and Mattheaus, W. (1992). Recovery of the navier-stokes equations using a
lattice-gas boltzmann method. Phys. Rev. A, 45(8).

Coa, N., Chen, S., Jin, S., and Martinez, D. (1997). Physical symmetry and lattice symmetry in
the lattice boltzmann method. Phys. Rev. E.

d’Humières, D. (1992). Generalized lattice-Boltzmann equations. In Shizgal, B. D. and Weaver,
D. P., editors, Rarefied Gas Dynamics: Theory and Simulation, Progrss in Astronautics and
Aeronautics, pages 450–458, Washington. AIAA.

d‘Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L.-S. (2002). Multiple-
relaxation-time lattice Boltzmann models in three dimensions. PhilTransRSocLondA,
360(1792):437–452.

Durst, F. (2002). Grundlagen der Strömungsmechanik.

Foley, J. D., VanDam, A., and Feiner, S. K. (1995). Computer Graphics in C. Principles and
Practice. Addison-Wesley.

Frisch, U., Hasslacher, B., and Pomeau, Y. (1986). Lattice-gas automata for the navier-stokes
equation. Phys. Rev. Lett., 56(14).

Frohn, A. (1979). Einführung in die kinetische Gastheorie. Akademische Verlagsgesellschaft
Wiebaden.

Glassner, A. S. (1989). An Introduction to Ray Tracing. Harlekijn.

Griebel, M., Dornseifer, T., and Neunhöffer, T. (1988). Numerical Simulation in Fluid Dynamics.
SIAM.

60 A SINGLE-PHASE FREE-SURFACE LATTICE BOLTZMANN METHOD

Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G. (1991). Lattice boltzmann model
of immiscible fluids. Pysical Review A, 43.

Hardy, J., de Pazzis, O., and Pomeau, Y. (1976). Molecular dynamics of a classical gas: Transport
properties and time correlation functions. Phys. Rev. A, 13(5).

Harris, S. (1971). An Introduction to the Theory of the Boltzmann Equation. Holt, Rinehart and
Winston Inc.

He, X. and Luo, L.-S. (1996). A priori derivation of the lattice boltzmann equation. Rapid Comm-
munications, 55.

He, X. and Luo, L.-S. (1997). Theory of the lattice boltzmann method: From the boltzmann
equation to the lattice boltzmann equation. Physical Review, E.

Jensen, H. W. (2001). Realistic Image Synthesis Using Photon Mapping. A K Peters Ltd.

Körner, C., Berger, F., Arnold, M., Stadelmann, C., and Singer, R. (2000). Influence of processing
conditions on morphology of metal foams produced from metal powder. Materials Science and
Technology, 16:781–784.

Körner, C. and Singer, R. (1999). Numerical simulation of foam formation and evolution with
modified cellular automata. Metal Foams and Porous Metal Structures, pages 91–6.

Körner, C. and Singer, R. (2000). Processing of metal foams - challenges and opportunities. Ad-
vanced Engineering Materials, 2(4):159–65.

Lallemand, P. and Luo, L.-S. (2000). Theory of the lattice Boltzmann method: Dispersion, dissi-
pation, isotropy, Galilean invariance, and stability. PRE, 61(6):6546–6562.

Lorensen, W. and Cline, H. (1987). Marching cubes: A high resolution 3d surface reconstruction
algorithm. In Computer Graphics Vol. 21, No. 4, pages 163–169.

Mucci, P. J., Dongarra, J., et al. (2003). Papi performance application programming interface.
WWW page. http://icl.cs.utk.edu/projects/papi/.

Pohl, T. (2003). Freewihr. WWW page. http://www10.informatik.uni-
erlangen.de/en/Research/Projects/FreeWiHR.

Quian, Y. H., d’Humières, D., and Lallemand, P. (1992). Lattice bgk models for navier-stokes
equation. Europhys. Lett., 17(6).

Shan, X. and Chen, H. (1993). Lattice boltzmann model for simulating flows with multiple phases
and components. Pysical Review E, 47.

Swift, M. R., Orlandini, S. E., Osborn, W. R., and Yeomans, J. M. (1996). Lattice boltzmann
simulation of liquid-gas and binary-fluid systems. Pysical Review E, 54.

Thies, M. (2000). Arbeitsbericht (numerischer teil).

Thürey, N. (2003). Fluid simulation with lbm. WWW page. http://www.ntoken.com.

Treibig, J. (2002). Simulation von Gas-Feststoff-Mehrphasensystemen mit dem Lattice Boltzmann
Verfahren. PhD thesis, Universitaet Erlangen-Nuernberg, Erlangen, Germany.

Watt, A. and Watt, M. (1992). Advanced Animation and Rendering Techniques. Addison-Wesley.

Welander, P. (1954). On the temperature jump in a rarefied gas. Arkiv Fysik, 7.

Wilke, J. (2002). Performance optimization of lattice-boltzmann methods.

Wolf-Gladrow, D. A. (2000). Lattice-Gas Cellular Automata and Lattice Boltzmann Models.
Springer.

Zeiser, T., Brenner, G., and Durst, F. (2002). Application of the lattice boltzmann cfd method on
hpc systems to analyse the flow in fixed-bed reactors. High Performance Computing in Science
and Engineering ’02, Transactions of the High Performance Computing Center, pages 439–450.

