FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN-NURNBERG
INSTITUT FUR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG)

Lehrstuhl fiir Informatik 10 (Systemsimulation)

OO0
\O\O
QQ/

Cache optimizations for multigrid in 3D

Nils Thurey

Studienarbeit

Cache optimizations for multigrid in 3D

Nils Thiirey

Studienarbeit

Aufgabensteller: Prof. Dr. Ulrich Ride
Betreuer: Dipl.—Inf. Markus Kowarschik
Bearbeitungszeitraum: 2001-12-01 bis 2002-06-12

Erklirung:

Ich versichere, dafl ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-
benen Quellen angefertigt habe und dafl die Arbeit in gleicher oder dhnlicher Form noch keiner
anderen Priifungsbehorde vorgelegen hat und von dieser als Teil einer Priifungsleistung angenom-
men wurde. Alle Ausfithrungen, die wortlich oder sinngem#f} iibernommen wurden, sind als solche
gekennzeichnet.

Erlangen, den 14. Marz 2003

Contents

1 Introduction

1.1 Multigrid in 3D L
1.2 Hardware Layout e
1.3 Cache Optimizations o 0 e
2 Reference Results
2.1 Determination of upper performance limits
2.1.1 Test Programs e
2.1.2 Results e
2.2 Function distribution oL
3 Data Layout Optimizations
3.1 Data Layouts e
3.2 Data Layout Implementation
3.3 Architectural Dependencies e
3.4 Looporder e e e e
4 Data Access Optimizations
4.1 Notation of Gauss Seidel Variants
4.1.1 Geometry Dimensions oo
4.1.2 Movement Dimensions Lo L e
4.1.3 Number of blocked Loops
4.2 Standard implementationso o
4.3 Fused e e
44 1-Way Blocking e
4.5 2-Way Blocking
4.6 3-Way Blocking
4.7 4-Way Blocking
4.8 Skewed Blocking
5 Results
5.1 Variable coefficients
5.2 Constant coefficients e
5.3 Constant coefficient and homogenous problems
6 Padding
6.1 Padding Size Selection Theory
6.2 Proof. e
6.3 Results. e e
6.3.1 For the reference multigrid program
6.3.2 For a homogenous problem 0oL
6.3.3 Ingeneral

7 Conclusions

11
11
12
14
14

17
17
17
17
17
18
18
18
19
20
21
22

24
24
25
25

30
30
31
32
32
32
33

34

A Machine Specifications 35

A.1 Platform A e e e e e e 35
A2 Platform B e e e e e 35
A3 Platform C e e e e e 36
A4 Platform D e e e e e e 36
A5 Platform E e e e 36
A6 Platform F e e e e 37
A7 Platform G e 37
B 3D Multigrid Implementation 38

ii

Abstract

To obtain the numerical solution for partial differential equations (PDEs) it has been shown
that multigrid methods work efficiently for these problems, as they perform with an asymptoti-
cally linear complexity. Still, for this class of algorithms, a limiting factor is the execution speed,
which is currently determined by the access to the main memory. However, the speed of computer
processors is currently increasing much faster than this memory latency decreases. Thus, modern
computer architectures employ memory hierarchies, that are 30 to 40 times faster than the main
memory [HP96], to mitigate this effect. It has been shown by [WKKR99, Pfa00, Wei01] that multi-
grid methods in 2D can be optimized in terms of spatial and temporal locality, to efficiently use
these memory hierarchies. In this thesis, the transferability of these techniques to 3D problems will
be investigated. Besides quantitative values for the gain in performance, it will be explained, why
these optimizations yield results different to the 2D case, and where the inherent limitations are.

Chapter 1

Introduction

1.1 Multigrid in 3D

Multigrid methods are among the most efficient algorithms for the solution of elliptic partial dif-
ferential equations (PDEs), and as such play an important role in many technical and physical
applications. This section will give a brief overview, see [BHMO00] and [TOS01] for a detailed
description of multigrid methods.

Systems of linear equations can be solved by a direct solver (e.g. Gaussian elimination), but
for different reasons like memory requirements and high complexity these solvers often cannot be
applied to larger problems anymore. Another option is to use iterative methods, the most basic of
which are the Jacobi Method or the Gauss-Seidel Method.

The numerical solution of PDEs often involves the solution of systems of linear equations of the
form

Az =b (1.1)

A Gauss-Seidel step then requires the following calculation for all unknowns

j—1 n
n+1 n n+1 -
u™ =3 e + 3 apul™Y, 1<j<n (12)
i=1 i=j+1

But, due to the effect that Gauss-Seidel and similar iterative solvers are inefficient for already
smooth approximations, multigrid methods exploit the fact, that lower frequencies appear as higher
frequencies on coarser grids. Thus the problem is solved using different levels of discretization, but
instead of solving the original equations, the residual is calculated as

r=Ax — f, (13)
and restricted to a coarser grid. The residual equation is then solved
Ar =e, (1.4)

after which the correction of the approximation is prolongated to the finer grid again. This residual
equation has the same form as Equation (1.1), thus this is a recursive process.
In the following, the focus will be on problems described by the scalar elliptic equation

V- (aVu) = f (1.5)
The resulting Gauss-Seidel iteration corresponding to the equation for unknown wug 4 is

Ugy,e = 1/Copyo(f — WoyUo—1,y,2 — €2,y,2Uat1,y,2

8$’y’zuwvy71az - nzayyzuwvy"'lvz

bmayazuzayyz_l - tzayvzuzyyyz"l‘l) (1'6)

where w, e, 5,1, b, t are the coefficients for the west, east, north, south, lower and upper neighbors,
respectively, and c represents the coefficient of the current point ug 4 ..
For the implementation, only Dirichlet boundary conditions of the form

u = ¢ on 0N

are used. The restriction of the residual is done using full-weighting. Let I?hvh = o2,

2h _ i[h +oh +oh + ot
Vg, = 64 Vaz—1,2y—1,22—1 T V2z41,2y—1,22—1 2¢—1,2y+1,22—1 2¢+1,2y+1,22—1
4+ h +oh T+ b +oh
Vaz—1,2y—1,2241 T V2z41,2y—1,2241 T V22-1,2y+1,224+1 T V2z41,29+1,22+1
h h h
+ 2 (V3p_1,29—1,2: T V2p41,29—1,25 + V2p_1,2941,22
h h h
+ Vopt1,2y+1,22 T V20-1,29,22—1 T Vazy1,29,22—1
h h h
+ Vap_1,2y,2241 T V2041,2y,2:41 T Vaz 291221
h h h
+ V9 2y41,2o-1 T V22,25 1,25+1 T V25 29 41,254+1)
h h h
+ 4 (v3y 19922 T V2r41,29.2: T V22,29 1,22
h h h
+ V30412 T V2229201 T V2 2y 2241)
h n
+ 8 v2z,2y,22]7 1 S z,Y,z S 5 -1 (17)
The error is prolongated to the fine grid with trilinear interpolation, letting Ighv% =t
h _ .2k
U2z,2y,2z - Uz,y,z
h _ 2h 2h
v2z+1,2y,2z - i(vm,y,z + Uz+1,y,z)
h _ 1(2h 4 2h)
v2z,2y+1,2z - 2 vm,y,z Uz,y+1,z
h _ 1(2h 4 2h)
v2z,2y,2z+1 - 2 vm,y,z Uz,y,z—{—l
1 .
h _ 2h 2h 2h 2h
U2m+1,2y+1,2z - Z(’Um,y,z + Uz—{—l,y,z + Um,y+1,z + Uz+1,y+1,z)
1 .
h _ 2h 2h 2h 2h
U2m,2y+1,2z+1 - Z(Um,y,z + Uz,y+1,z + U:z:,y,z+1 + Uz,y+1,z+1)
1 .
h _ 2h 2h 2h 2h
U2m+1,2y,2z+1 - Z(’Um,y,z + Uz—{—l,y,z + Um,y,z+1 + Uz+1,y,z+1)
1 .
h _ Lo oon 2h 2h 2h
Uao+1,2y+1,2:41 T g (V29,2 + Voi1,9,2 + V2y11,2 + Vay,oh1

2h 2h 2h
+ vz‘+1,y+1,z + vz,y+1,z+1 + Uq:+1,y,z+1

n
+ /U.i’-:—l,y—i-l,z-l—l)a 0 S z,Y,z S 5 -1 (18)

Due to the iterative nature of the multigrid algorithm, i.e. the successive traversal of the data set
until a given convergence criteria has been fulfilled, they exhibit a high degree of temporal locality.
This motivates the effort to cache optimize multigrid implementations. Our multigrid program,
which will be described in more detail in Chapter 2, uses a red-black ordering of the unknowns,
as the data dependencies then allow the update of red or black points in any order. As multigrid
scheme, a standard V-cycle will be used. In [Yav96], it is shown that a red-black SOR is more cost-
effective in 3D, and usually yields better convergence results. All optimization techniques discussed
in this thesis can be used for both red-black Gauss-Seidel as well as SOR.

1.2 Hardware Layout

Nowadays, while the speed of the CPU grows with rates of about eighty percent per year, the
memory access times only decrease five to ten percent in the same period of time. To lessen the

a) b) Top

7 - point stencil stencil

and sample grid structure Center\ North

East

West

South-

Bottom

Figure 1.1: Stencil resulting from the described discretization.

effect of this growing disparity, hierarchies of caches are used in modern computer architectures
[HP96, Han98]. Thus it is very important for the software to efficiently make use of all caches in
a computer. Accesses to an element of data held in cache is an order of magnitude faster than the
main memory access, which is the result of a cache miss, meaning that the needed data is currently
not in the cache. The data is loaded into the cache levels in cache lines of usually 32 or 64 bytes.

To achieve the necessary speed, cache memories are much smaller than the main memory. The
address of a cache line in the cache is determined with different strategies. Direct-mapped caches
can store a data element only at a single address, determined for example by (X mod C), where X
is the virtual address and C' the size of the cache. It is assumed, that the virtual address is used to
determine the cache address. The result of this is, that a subsequent access to the memory address
X +nxC will evict the element from address X from cache. Hence, the next access to the data in
X will result in a cache miss. This can become a problem, if for example, two neighboring elements
of a multidimensional array are stored at addresses with the distance being a multiple of the cache
size, and these elements are always needed together in a calculation. The result is cache-thrashing,
and a significant drop in performance. The best way to avoid this problem, would be to store a
cache line at any address in the cache. This is called a fully-associative cache. As this is currently
unrealizable, due to the fact that for retrieving the element, the whole cache address space has to
be searched, modern architectures employ set-associative caches. This enables a data element to
be stored in IV different places, for an N-way set associative cache.

Cache misses can be classified into the following three types. Compulsory misses occur, when a
data item is accessed for the first time, and therefore cannot be in the cache yet. Capacity misses
on the other hand, are caused by limited cache capacity. The data which is requested does not
reside in cache anymore, as, between the two subsequent accesses, too many other data items have
been accessed. If these other accesses are less than the total cache capacity, the miss results from
the limited cache associativity, and would not have occurred in a fully-associative cache. In this
case it is called a conflict miss [Los98].

If a code accesses data items which are stored close to each other, it exhibits spatial locality. A
single cache line could for example satisfy the accesses to multiple floating point numbers with a
single main memory access, before it is evicted again. Temporal locality on the other hand, means
that the same data element is accessed again, once or more, after a short period of time.

For instruction caches, which are the pendant of the data caches, the size is more important
than the cache address of an instruction. If a loop body cannot fit into the instruction cache, it
will induce main memory accesses even if the data accesses can be completely satisfied from the
data cache. This is especially important when unrolling more complex loop kernels, e.g. those from
Section 4.6 and 4.7. Branching operations can also be responsible for instruction cache misses, if
the result of the branch is not correctly predicted by the processor. Conditional statements in loop
nests should for example be avoided at all costs [DS98§]

Another cache memory is the Translation Lookaside Buffer (TLB). To support multi-tasking in
hardware, the CPU has to resolve a virtual address for a running process to retrieve the physical
address. The table to translate the virtual to physical addresses is also stored in main memory, and
to avoid these main memory accesses modern architectures store 64 to 128 translations in the TLB
for a faster lookup. If different data elements, spread too far over the virtual address space, are

accessed, this can result in a main memory access to the page table although the data item itself is
still stored in the cache. If the address of a page is not in the TLB, this is, of course, called TLB
Miss.

The cache optimizations proposed in this thesis were tested on different platforms, which are
described in AppendixA on page 34. On Platform A, which uses an Alpha 21164 CPU, the profiling
tool DCPI (Digital Continuous Profiling Infrastructure, see [ABD*97]) was used to obtain a detailed
analysis of the multigrid program performance.

1.3 Cache Optimizations

Even though there are efforts to enhance the caches in hardware, like increasing the associativity
or prefetching, the software also has to be optimized to improve the hit rates of caches. This is
usually done by increasing the temporal and spatial locality, without changing the semantics of the
program.

The validity of these transformations first has to be checked by dependence analysis, to assert
that they do not violate any control or data dependencies of the program. Control dependencies
arise from branching instructions, which execute statements depending on a certain condition. The
flow of data in a program determines the data dependencies between the instructions. Dependence
graphs or various dependence testing algorithms can be used, which are especially important for
automated optimization in compilers.

The cache optimizations themselves concern either the data layout, or the data accesses. Data
layout optimizations improve the locality of a program by reordering the data in a way, that either
reduces conflict or TLB misses, or increases the cache or register reuse. The data for numerical
codes are usually stored in relatively large arrays. If several types of values are needed, it has to
be decided, whether these should be stored in separate arrays, or some of these arrays should be
merged. The different possibilities for a variable coefficient multigrid program will be evaluated in
Section 3.1. Generally, the data structure should reflect the access pattern of the implementation.
If several data elements are always needed together in one calculation, an array merging could result
in increased cache line reuse. When one data item of a cache line is accessed, all other values that
are stored in the same cache line will not require further main memory accesses, as the cache line
will always be loaded into cache as a whole.

Still, multiple accesses to a single multidimensional array can lead to conflict misses, especially
when the array dimensions are multiples of the cache size. To avoid these negative effects, the
arrays can be artificially enlarged. This is called array padding, and is usually done by increasing
the array dimensions, without accessing these additional data buffers. This standard padding for a
3D array is illustrated in Figure 1.2, on the left side. Increasing the array in X-direction can reduce
conflicts that arise when accessing data items in the same plane, while padding in Y-direction, intra
plane padding, can prevent conflicts from accesses to multiple planes respectively. This standard
padding, however, can lead to huge memory overhead, especially in the 3D case. As only the offset
of virtual addresses in the cache is of importance, it is preferable to insert an arbitrary sized padding
between two planes. This non-standard padding is displayed on the right of Figure 1.2. As can be
easily seen, it is a superset of the standard padding sizes, as, given a standard padding of P, the
non-standard padding can be set to Py * (D, + P,), where D, and P, are the size of the array in
X-direction, and the padding in X-direction. Still, even with this non-standard padding, it is only
possible to enlarge the array by multiples of the size of a single data item.

Other cache optimizations change the access order of the program. Loop interchange can be
used to improve the stride of a computation. When the loops of a loop nest can be permutated, this
should be done in a way that accesses the data according to the memory layout. The correct loop
order can reduce the stride of the loop, improving the reuse in cache lines, and shorten the time
between two subsequent accesses to a data item. For several loop nests that have the same iteration
space, these can also be fused. The loop bodies are then executed together in a single loop nest,
reducing the loop overhead and increasing the instruction level parallelism. Furthermore, when the
data that is accessed does not fit in cache, each loop nest will result in new cache misses, while the
same data can be immediately reused in a fused loop.

For multiply nested loops, the time between two subsequent accesses may be very long. Instead of
working on the whole problem space, loop blocking (also called tiling) can be imagined as partitioning

Standard Padding Non-Standard Padding

[] Normal data item [] X-Padding I Standard Y-Padding [Non-Standard Y-Padding

Figure 1.2: Standard padding can be seen on the left, non-standard padding, which introduces a
certain number of data items, not necessarily a multiple of the y-dimension, on the right.

this space into smaller regions (tiles), that should be adapted to the size of the cache. Loop blocking
is done by introducing additional loops, that run over a smaller set of values than the original ones.
The drawback of this is the increased loop overhead and decreased pipeline performance due to
the shorter loop lengths. When the loops get too short, basic compiler optimizations like software
pipelining and unrolling are often not performed. On the other hand, the increased temporal
locality can significantly speed up the program due to the reduced main memory accesses. A
popular example for this optimization is matrix-matrix multiplication. A standard implementation
is shown in Figure 1.3a, that is blocked in Figure 1.3b. While in the standard version, in between
two accesses to C(I,J), the complete array with its N x N values has been accessed, the blocked
version accesses only BT x BJ data elements.

The application of loop transformations to general problem classes is a current research topic
[SL99, GJF01], and various models have been developed to determine the transformation effects
[MLW91]. Still, many of these techniques are often too complicated to be automatically applied by
a compiler, and thus have to be manually implemented.

The optimizations in this thesis will focus on multigrid algorithms on structured grids [BDQ98],
while other works like [DHK*00] and [GKKS01] also include unstructured meshes, or other other
algorithms like fast fourier transformations [FJ98] or bit-reversals [ZZ99]. Various optimization
techniques have been proposed for multigrid in 2D [Dou96, Pfa00] and their applicability to the 3D
case will be evaluated in the following chapters.

a)

do K=1, N
do J=1, N
SCALE = B(X,J)
do I=1, N
C(I,J) = C(I,J) + A(I,K)*SCALE
enddo
enddo
enddo

b)

do JJ=1, N, BJ
do II=1, N, BI

do K=1, N
do J=JJ, min(JJ+BJ, N)
SCALE = B(K,J)
do I=II, min(II+BI, N)
C(I,J) = C(I,J) + A(I,K)*SCALE
enddo
enddo
enddo

enddo
enddo

Figure 1.3: a) Standard matrix-matrix multiplication implementation b) Blocked version of the
same code, two new loops are introduced, blocking the X and Y loop of a) by BI and BJ.

Chapter 2

Reference Results

This chapter describes the first experiments, which determine the possible speed of a multigrid
program with no negative cache effects, and the effect of different loop orders in a red-black Gauss-
Seidel implementation.

2.1 Determination of upper performance limits

To evaluate the possible effect of cache-optimizations for a 3D multigrid program, and to further-
more ensure that no pipeline-stalls or other similar effect spoil the cache-optimizations, the following
experiments were performed. Several small test programs were written, which show the maximum
performance of a red-black Gauss-Seidel kernel without any negative cache-effects. This requires
that all data that is needed for the calculation has to reside without conflicts in the highest cache-
level. To compare the performance for different problems, all programs were made in three variants.
One to only solve homogenous problems without a right hand side or coefficients, a second intro-
ducing a right hand side for inhomogeneous problems, and, corresponding to the multigrid program
used in the following chapters, a red-black Gauss-Seidel implementation with right hand side, and
seven coefficients per unknown. The first variant thus uses one double per unknown, resulting in
8 bytes of memory required per grid point. The second variant uses 16 bytes for the two doubles,
while the third requires 9 floating point values, and a total of 72 bytes per unknown. To ensure
that no cache-thrashing appears, these values are stored in an equation-oriented data layout (see
Section 3.1). To enable as many compiler optimizations as possible, the arrays were passed to
the Gauss-Seidel method to make the compiler aware of the 3D structure, as will be described in
Section 3.2.

2.1.1 Test Programs

For each of these variants there are six programs. All of which, except the last one, run on 333
grids. This sixth program, which should show the full effect of problems too big to fit in cache, runs
on a 1293 grid. While this last program performs a complete red-black Gauss-Seidel step, the other
programs use Gauss-Seidel-like computational kernels with similar calculations. All programs are
padded to avoid pathological cases.

1. The first test runs through a single line of points in the 333 grid, relaxing only the 16 red
points over and over again. This was used as a reference with minimum memory requirements,
and minimum loop overhead, as only a single iteration loop and an x-loop are necessary.

2. The next step is to perform a red black relaxation. In the iteration loop there are now two
loops, one running over the red, the other running over the black points. Now there is a total
of 31 inner points which are relaxed.

3. Similar to the optimization described in Section 4.3 the third test program has fused loops ,
relaxing a red point (x,y,z) and then its black neighbor (x,y,z-1), in the adjacent plane
below. This again reduces the program structure to an iteration loop, and a single loop over
the X-coordinates, relaxing a total of 32 unknowns.

4. The impact of the introduction of the two other loops over the Y- and Z-coordinates is tested
in the next program. These two loops are trivial and only run over one value, thus should
not result in a significant change in performance with respect to the third program. However
this is not the case for all experiments, as will be shown in section 2.1.2.

5. The fifth program should perform similar to a Gauss-Seidel implementation running com-
pletely in cache, now also executing the Y- and Z-loops. To keep the memory requirements
low, only four pairs of neighboring lines in the grid are relaxed. So the Y- and Z-loops run over
two different values each, and in total six adjacent lines are relaxed — one pair of lines with
red points, on pair below where both red and black points are relaxed, and the bottom-most
pair with only black points.

6. To show the effect of the problem getting too large to be kept in cache, the last program
performs fused red-black Gauss-Seidel relaxations over a 129° grid. The resulting performance
decrease, that can be seen as due to this last modification of the test program, is the motivation
for cache optimizations in 3D. This size was chosen to be an order of magnitude larger than
the L3 caches of all machines under consideration.

First runs revealed problems with the better compilers, when allowing automatic loop inter-
changes. This could lead to the compiler switching the iteration and the X-loop. This results in
unrealistic MFLOPS rates, as the data items are not even loaded from the cache, but kept in a
register. To prevent these optimizations, an old Fortran work-around was implemented, as shown
in Figure 2.1. The programs always read an integer value from the standard input, and adds this
value to the z-coordinate in the iteration loop. When a zero is passed to the program this way, it
behaves just like it would without this modification, but, as the compiler is luckily not aware of
this, it cannot interchange the two loops anymore.

Early runs used the bandwise data layout described in Section 3.1, but no good MFLOPS rates
were achievable, as for many different paddings and problem sizes cache-thrashing could not be
completely avoided. To obviate this, an equation-oriented data layout was implemented.

2.1.2 Results

General performance

All results of the detailed performance evaluation show the same basic trend, as depicted in Fig-
ure 2.2 for different platforms. High MFLOPS rates are obtained with the first three test problems.
On Platform C (Compaq XP 1000 machines, see Appendix A for a detailed description of the
platforms) there is a performance decrease due to the introduction of the Y- and Z-loops, but still
all machines perform well up to program five, which runs over a small part of the grid with fused
relaxation. Hence, this basic red-black Gauss-Seidel kernel can perform well, can be optimized by
different modern compilers, and runs with high MFLOPS rates. Note that these rates are still sig-
nificantly below the theoretical limit of these machines. As shown in [Wei01] this can be explained
by the structure of the assembler code, more specifically the mixture of integer operations (e.g.
load/store operations, index calculations etc.) and floating point operations. This distribution of
operations can be used to determine a theoretical upper performance limit. Assume that these two
kinds of operations can be executed in parallel, and that there is the same number of floating point

integer null
read *,null
do iter=1, ITER
do x=1,N-1
RELAX(x,y,2)
enddo
z= z+null
enddo

Figure 2.1: To prevent the compiler from interchanging the iteration and x-loop an integer with
the value zero is added to the z-coordinate in each iteration.

and integer units, as is for example the case on Platform A (a DEC PWS 500au). Now, when there
are twice as much integer operations as floating point operations, the machine will only reach a
MFLOPS performance of half the maximum CPU speed, due to the larger amount of integer oper-
ations that need to be executed. Furthermore, the test programs described here execute completely
in cache. However no real multigrid application is likely to achieve this. Thus the performance
measured for real multigrid applications will always be below the performance of this test program.

All graphs also show the expected performance decrease when the problem size gets too big
to fit in cache. The performance decreases from around 200 MFLOPS for Platform A to below
50 MFLOPS. On Platform F (a Pentium 4) it decreases from 500 to about 90 MFLOPS. This
motivates extensive cache-optimizations, although, as mentioned before, these 200 or 500 MFLOPS,
respectively, are unlikely to be reached.

Biased measurements

Although the graphs in Figure 2.3 show the same trends as those in Figure 2.2, they are not so
easily interpretable, as there are several variations for the different programs that cannot be easily
explained. The graph for Platform E (AMD Athlon CPUs) shows the results for compilation with
an older GNU Fortran (Version 2.91 instead of 2.95 on Platform D), that fails to optimize the Gauss-
Seidel kernel effectively, once the loop structure gets more complex. The other graph shows the
performances for a newer DEC Fortran90 compiler (version 5.3) on Platform B. This performance
seems to be disappointing compared to the older DEC Fortran77 (Version 5.1 on Platform A), and
the extraordinarily low performance for the second test program with variable coefficients seems to
be a consequence of very poor software pipeline optimization.

2.2 Function distribution

To focus the optimizations on the most computationally expensive part of the multigrid program,
the work distribution was measured on Platform A using DCPI. For a 3D program the relaxation
function needs around 80% of the total execution cycles, the restriction uses 15%, and the correction
around 5%. The initialization and other parts were not included in the measurement.

Problem size | Relaxation | Restriction | Correction
83 81.56% 14.29% 4.15%
16° 80.94% 14.75% 4.31%
323 78.83% 15.70% 5.47%
643 82.36% 14.40% 3.24%
1283 79.74% 14.83% 5.43%

These numbers justify the concentration of optimization efforts on the relaxation method. The
restriction could also be merged into the relaxation due to the similar access pattern (see [Wei01]
for details), but to maintain the modularity of the multigrid program, this technique was not
implemented within the scope of this thesis. For specific problems an optimized version of the
program could be written, but for general problems the possibility to easily replace a given restriction
or correction method is necessary.

300

mogenous probl em

I Homgenous problem only
Inhomogenous problem wi lh vanable coefficients (U F *Coef

800

700 -

Homgenous problem (only V) III
Inhomogenous problem (U
Inhomogenous problem with vanable coefficients (U,F, Coef

Homgenous problem (only V)
Inhomogenous problem (U
Inhomogenous problem with variable coefficients (U,F,7* Coeff) T3

500

450

Inhomogenous problem (U ari
Inhomogenous problem with variable coefficients (U,F,7* Coeff) T

Homgenous problem (only U) =1
g p! ()é”;;

600

Homgenous problem (only U) C&=1
Inhomogenous problem 9 IKI
Inhomogenous problem Wlth varlable coefflu ents (U F Coé

Figure 2.2: Performance results on Platform A (top left), Platform C (top right), Platform F
(middle left), Platform D (middle right) and Platform G (bottom left). The small 7 indicates a
run that can be seen in other pictures, for a similar configuration (standard relaxation, 1293 grid),

too.

300

Homgenous problem (only V)
Inhomogenous probl
Inhomogenous problem wnh vanable coeffla ents U F Coef

250

genous TO

Inhes Homgenous problem only Fi
om(
Inhomogenous problem with variable coefflu ents (U F

Figure 2.3: Performance results for Platform B on the left, and Platform E on the right.

10

Chapter 3

Data Layout Optimizations

Three typical data layouts will be discussed in this chapter, including a efficient Fortran implemen-
tation for the access-oriented data layout, which yields the best performance results.

3.1 Data Layouts

Analogous to the 2D case, there are many different approaches to the memory layout of the problem
data. Read [Wei01] and [KWRO02] for a detailed description and measurements for 2D problems.
Only three typical approaches will be discussed in this thesis, namely, the access-oriented, the
bandwise, and the equation oriented data layouts.

The first solution that comes to mind is, to separately store the unknowns u, the right hand
side f, and all coefficients (n,e,s,w,t,b,c for north, east, south, west, top, bottom and center,
respectively) in arrays (see Figure 3.1). This is called a bandwise data layout, and may be easy
to implement, but is not good in terms of cache performance. The cache line usage, and thus
the exploitation of spatial locality of the algorithm is good, but it is very difficult to avoid cache
thrashing. The access patterns for u and the other arrays are different, which makes it hard to
avoid the eviction of one data element upon access of another, and our experiments have shown,
that it is very hard to find a reasonable padding even for small problem sizes.

Another approach is to separate the two different access structures of a Gauss-Seidel smoother.
The unknowns usually are accessed in a region around a certain point defined by the stencil, while
the right hand side, and the coefficients are only needed for the current point, and not for its
neighbors that are used for the new approximation. This separation of the data into two arrays,
one for the unknowns, and one for the right hand side together with the coefficients for each point,
is called access-oriented data layout. The second array holds the data in blocks for each point, as
shown in the middle of Figure 3.1. This data layout also exploits spatial locality very well, as for an
access to an unknown, its neighbors in the same cache line are also stored in cache. Moreover, upon

Bandwise Data Layout

u./u./ U/ N /N /- N/ E./E./ - - E/ S./s./ - - S/ w, /w, /. w/
[I [I [I [I [[[I [[[[[I [I
T./T7./) - T/ B./B./ - - B/ c./c./ - 0/ Fo/Fu/ - F/
—— f —— f o — f —— f

Access-oriented Data Layout

u./u./ - - U/
[[[[

FuNGE L SuWT0BwCoi /RN EL S0 W T B Cos s FWNWENM’SNNNV\LNNTNMBWCW%
[[[[

Equation-oriented Data Layout

U RN E S W,T0:Bw Coi /U, BN, B, 8o W, T4 Bei G - UWFNNNNNNNENMSWV\LWTNNNBNMCNW%
[[[[

Figure 3.1: Memory organization for the three different data layouts. At the top the nine separate
arrays for the bandwise data layout can be seen. Below the array for the unknowns, and the array
for the remaining variables are depicted (access-oriented data layout). The equation-oriented data
layout uses only a single array for all data.

11

access of a right hand side value, the coefficients for the corresponding unknown are also needed,
and due to the grouped data layout, these accesses can be satisfied from the same cache line.

If the data is stored according to a single equation of the problem, meaning that each unknown is
grouped with its right hand side, together with coefficients needed to solve this unknown’s equation
(Figure 3.1 bottom), this is, not surprisingly, called an equation-oriented data layout. For this
layout, upon access of an unknown, it’s coefficients and right hand side are also loaded into the
cache. While this is certainly a positive effect, the drawback in comparison to the equation oriented
data layout is, that for all neighboring unknowns these values are also loaded, although normally
not needed. As the reuse of right hand side and coefficients is only across different Gauss-Seidel
iterations, this results in many data items that are unnecessarily loaded and stored in cache. On
the other hand, for blocked accesses (see Section 4.6 and 4.7), an equation oriented data layout
can reduce the number of TLB misses, as the needed data is more likely to be stored in the same
memory page. In experiments, this leads to no visible performance improvements, due to the overall
bad data cache utilization.

A performance comparison of the data layouts can be seen in Figure 3.2. Although the equation-
oriented layout performs very well for small problem sizes, as it minimizes conflict misses and can
be easily padded, the performance decreases drastically for bigger problems. On Platform F, the
performance for a 1292 grid is roughly half that of the other two layouts. The bandwise data layout
performs better for these larger problems, but even for small problems induces many conflict misses,
and is very difficult to pad properly. The best performance can be seen for the access-oriented data
layout. On Platform A it is around 30 per cent faster than the bandwise storage, while on other
machines this gain is not so obvious. Still, the performance with access-oriented data layout is the
highest for problem sizes of 64% and 1293 on all machines.

3.2 Data Layout Implementation

To use the padding techniques described in Chapter 6 in a Fortran77 program, it cannot be avoided
to reserve a huge workspace array during startup, and then manually allocate space for the needed
arrays. Since all functions have to have access to this array, it is declared as a common block. For
the implementation of the relaxation, macros were used to separate the implementation of the data
layout from the data access.

These macros can be implemented by directly accessing the workspace array, calculating the
offsets into it, e.g. workspace(offset + (Z*(Xdim*Ydim) + Y*(Xdim) + X)) , where Xdim,
Ydim, and Zdim are the dimensions in x,y and z direction, respectively. Another method is to pass
the offset to a function, which then treats the pointer that is internally passed to the function as a
pointer to a three dimensional array, example code can be seen in Figure 3.3.

Our experiments have shown, that good compilers (like DEC Fortran 7.1 on Platform A) can
produce equally fast code with both versions, while other compilers have benefitted from the second
version. If this kind of parameter passing is used, the compiler is more easily aware of the structure
of the arrays, and the accesses to it, making it easier to perform optimizations.

Furthermore, the second version still allows working with common blocks and no extra param-
eters for all other methods, that are not performance critical. The offset in the common block
can then only be passed, as described above, to functions like smoothing or restriction , while the
remaining ones can still work with the macros and direct workspace accesses, that may be easier to
implement.

A traditional padding can be nicely implemented, as all that is necessary is a modification
of the grid array, e.g. double precision grid(0:Xdim + XPAD,0:Ydim + YPAD,0:Zdim). The
non-standard padding is not directly supported by this kind of parameter declaration. The X-
padding can still be implemented in the array declaration, but to use the non-standard Y-padding,
the access to the array has to be changed. Access of a grid point grid(x,y,z) has to be changed
to grid(x+(z*YPAD),y,z). This actually violates the Fortran array declaration, but if the array
is initialized in a workspace according to the described non-standard padding, this will yield the
expected results. As can be seen in the code fragment above, the offset of each XY-plane in the
grid is added to the X-coordinate according to the Z-coordinate of the current point. This will
make Fortran shift the array access (z*YPAD) array elements to the correct element. To prevent
calculations upon each access, it is possible to only calculate the offset once, and modify the start

12

80
Access—oriented I

 Bandwise 180
0 Equation—oriented mmmm— |
160
140
120
100
80
60
40

20

9 17 33 65 129

120
Access—oriented I
 Bandwise 140
Equation—oriented mmm—

wo- W

120
80 [B [EEREEREEEEEREEE R R 100

80
60 [- B

60
a0 - B om0

40
20

20
0 0

9 17 33 65 129

Figure 3.2: MFLOPS rates of the multigrid program, comparing the three different data-layouts
for different problem sizes. All MFLOPS rates were measured using a suitable padding for each
problem size and data layout, and the best possible loop order. Top left for Platform A, top right

Platform C, bottom left Platform D, and Platform F

13

,,,,,,,,,,,,,,,,,,,, Access—oriented mm— _|
. Bandwise mmmm
Equation—oriented H—

9 17 33 65 129

Access—oriented
. Bandwise mmmm
Equation—oriented

9 17 33 65 129

bottom right.

program multigrid
[init arrays, dimensions and offsets]
call rbgs(workspace(offset), Xdim,Ydim,Zdim)
[process results]
end

subroutine rbgs(grid, Xdim,Ydim,Zdim)
integer Xdim,Ydim,Zdim
double precision grid(0:Xdim,0:Ydim,0:Zdim)

. [perform gauss seidel iteration]

end
Figure 3.3: Example of passing a workspace offset to a function, that treats it as a 3D array.
and end points for loops running over an region with constant z-coordinate.

3.3 Architectural Dependencies

The effect of padding differs greatly when using different data layouts and architectures. MFLOPS
rates for the three data layouts presented in Section 3.1 on different architectures with various
padding sizes can be seen in Figure 3.4.

It is obvious that on all architectures, the low MFLOPS rates of the equation-oriented data layout
cannot be increased much by padding. Although the bandwise data layout is faster on Platform
C when no padding is applied, the access-oriented data layout is faster on all architectures under
consideration when a suitable padding is found.

The different effects of padding can be seen when only the access-oriented data layout is com-
pared across the platforms. While on Platform A and D only a few MFLOPS peaks are visible,
Platform C shows more of these. However, on Platform F the program is nearly as fast without
padding (the left-most point), as it is with suitable paddings. Some paddings only lead to a signif-
icant performance decrease, and although the effect is not always positive, this Platform (with an
Intel Pentium 4 CPU) is affected most by the varying padding sizes.

3.4 Loop order

Due to the column-major storage format in Fortran, it is important, that the innermost loop runs
over the first index, the next loop over the second index and so on. In this case, the loop kernel
accesses array elements in the order in which they are stored in memory, which allows accesses to
data items stored in the same cache line without additional main memory accesses. Thus, this loop
order is the best to exploit spatial locality.

The effect of a cache aware loop order can be seen in Figure 3.5. The arrays were declared as
double precision u(0:DimX,0:DimY,0:DimZ) , and so a Gauss-Seidel method with three loops
running over X,Y and Z is fastest, if the first loop determines the Z-coordinate, the second deter-
mines the Y-, and the third and innermost loop determines the X-coordinate, as this coincides with
the storage in memory. The more the loop order differs from this order, the slower the program
gets, the MFLOPS rates drop from above 20 to below 15. Once the innermost loop runs over a
different direction than X, the level 1 and 2 cache misses increase, and for an innermost Z-loop there
is a high number of level 2 and 3 cache misses, due to the lessened spatial locality. Furthermore, the
number of TLB misses greatly increases for innermost Y-loops, and is again doubled for innermost
Z-loops. Note that this does for example not mean, that the performance of the method is halved,
as the performance is generally not only determined by TLB misses, or cache misses as a whole,
but also by, for example, pipeline effects and register dependencies. So once the TLB misses are
reduced to nearly zero, as is the case with innermost X-loops, other effects like level 3 cache misses
lessen this positive impact.

14

Access oriented =
Bandwise 1

35

10

Equation oriented C—=—1

o

Access oriented =
Bandwise 1

35
30
25
20

15

10

5 ...

Equation oriented C—=—1

0

100

20

100

40

20

0

Access oriented =1
Bandwise =

Equation oriented

Access oriented =1
- Bandwise =1
Equation oriented

Figure 3.4: MFLOPS rates for different paddings on various architectures, using the whole multigrid
program, a problem size of 129 and the three different data layouts. Platform A top left, Platform
C top right, Platform D bottom left and Platform F bottom right.

15

1.2e+09

1e+09

8e+08

6e+08

MFLOPS
L1 Cache Misses

3e+08

2.5e+08

2e+08

1.5e+08

L2 Cache Misses
L3 Cache Misses

1e+08

5e+07

TLB Misses

Figure 3.5: Performance results on Platform A for a standard red-black Gauss-Seidel method with
different loop interchanges, on a 129 grid, using an access-oriented data layout. A reasonable
padding was used for all programs, in contrast to other measurements, where the best padding was
determined separately for each program. The top left graph shows the MFLOPS rates, top right
the L1 cache misses, middle left L2 cache misses, middle right L3 cache misses, and bottom left the
TLB misses. The bars were ordered in descending MFLOPS order (see top left graph).

16

Chapter 4

Data Access Optimizations

As shown in Section 2.2 the smoothing component of a multigrid solver is the most time-consuming
part, and it has been shown in 2D [WKKR99], that cache optimizations can speed up the computa-
tion considerably. To improve the data locality, and avoid main memory accesses, the traversal-order
of the Gauss-Seidel method can be changed to improve the possibility of memory accesses to be
satisfied by a higher level of the memory-hierarchy.

As part of this thesis, six blocking variants are explained and benchmarked. Furthermore, a
Red-Black Gauss-Seidel will be assumed from now on, as its parallelization and convergence-rate
have been shown to make it very suitable for multigrid calculations. For the following sections,
when considering the amount of data to be held in the cache, it is assumed that this data is cached
in a non-conflicting way. The problem of cache-thrashing and the determination of non-conflicting
tile-sizes is discussed in more detail in Chapter 6.

4.1 Notation of Gauss Seidel Variants

To identify the variants selected, it was necessary to choose a naming convention uniquely identifying
them. Several approaches are possible: using geometry dimensions, movement dimensions or the
number of blocked loops.

4.1.1 Geometry Dimensions

Considering the number of dimensions of the shape moved through the grid, the names 3D blocking
for a small cuboid being moved through the grid, and 2D blocking for a plane-wise movement are
intuitive. The problem is, that there is no real 1D blocking, as all these would have the same effect,
similar to the 2D blocking, of first finishing the relaxation of one plane, before moving on to the
next.

4.1.2 Movement Dimensions

When, instead, choosing names regarding the movement dimension of the shape, 3D blocking re-
mains the same. A problem is the discontinuity of 2D blocking and 1D blocking, as the shape for
2D blocking would be a line in the cube (a one-dimensional shape), while 1D blocking requires a
plane (two-dimensional) to be moved through the cube. This switching of dimensions (2D blocking
with 1D shape, and 1D blocking with 2D shape) makes it hard to intuitively identify a blocking
method.

4.1.3 Number of blocked Loops

To identify the method by counting the number of blocked loops is non-ambiguous. In our standard
implementation there are four loops: the X,Y,Z and iterations loop, all of which can be blocked,
resulting in 7-way blocking to 4-way blocking. Note that in this case it is not recommended to talk
of n ’D’ blocking, as this would allow 4D blocking to be performed on a 3D problem, which sounds
very un-intuitive. Similar to the other two terminologies, the problem of loop interchanges remains,

17

so for unique identification of a blocking implementation, the loop order also has to be considered.
In this chapter this last naming convention will be used, and the 1-way loop interchanged variants
will all be discussed in Section 4.4.

4.2 Standard implementations

The standard implementation of a red-black Gauss-Seidel method, based on the discretization and
stencil described in Section 1.1, is shown in Figure 4.1.

This straightforward implementation already has the most efficient ordering of loops, given
a standard Fortran-like declaration of the arrays with column-major data layout. As shown in
Figure 3.5, the incorrect loop order can lead to very low MFLOPS rates. This is due to a resulting
stride not equal to one, but to N or in the worst case N2. The cache-lines that are loaded due to
access to a single memory location (x,y,z) also contain data items with neighboring X-values, so
the innermost loop should naturally run over these values.

The two separate relaxations of red and black points require a total of 2v sweeps over the grid
(where v is the number of iterations that needs to be performed), and the whole data of the grid
to fit into cache. If this is not the case, the red points needed will be evicted from cache, and
the black points requiring them will lead to a second main memory access. Let U be the size
of a single point in the grid, and V the size of the data necessary to relax it (in our example
implementation the right-hand side, and 7 coefficients, thus 64 bytes), then this requires the cache
to hold N3 % U + (N — 2)® * V bytes in order that this code can be executed efficiently (N = 2% +1
is the size of the arrays in x,y and z direction).

4.3 Fused

The first real optimization is to avoid the two complete traversals of the grid, and fuse the red and
black loops into one. As shown in Figure 4.3a this leads to a relaxation of a red point in plane i
and directly afterwards to that of the black point below in plane i — 1. The black neighboring point
can be updated without violating any data-dependencies, as all 6 surrounding red points are now
updated correctly.

The four red points surrounding this black point were relaxed during the last iteration of the
Z-loop, and the red point below two iterations ago. This only requires v sweeps over the grid,
instead of 2v in the standard case.The code for this fused main loop can be seen in Figure 4.2, the
resulting access pattern is illustrated in Figure 4.3a. The fusing of the loops, analogously to 2D
requires special treatment of the planes with Z =1 and Z = N —1, as these cannot be updated with
the described loop kernel. Before the loop from Figure 4.2 starts, the red points of the first plane,
Z =1, already have to be updated once, while the black points of the last plane, Z = N — 1, have
to be updated as a final step. This kind of preparation is common for all subsequent Gauss-Seidel
variants. The more irregular the shape of the domain for updating the points in the innermost loop
gets, the more planes on the sides of the grid have to be handled separately.

This fusion requires a total of 4 planes to fit in cache. After the black point is updated, the red
one below is never needed again for this iteration. This still requires N2 x4 U + (N —2)? x2xV
bytes, which will quickly exceed modern cache sizes for finer grids.

4.4 1-Way Blocking

While loop-fusion combines the red- and black-point sweep, the next logical step is to block the
iteration loop. This by itself only introduces another loop without changing the update order, but
if the new loop if moved into the X-loop, multiple red-black pairs of unknowns will be updated in
one step. The update order then is similar to that of the fused method, and is shown in Figure 4.3b.
An exemplary implementation can be seen in Figure 4.4. Assuming that N2 % (2 Bx + 2) * U +
(N —2)2 % (2 x Bg) = V floating point numbers can be held in cache, these values will be reused
as often as necessary. Assuming that all iterations were blocked, after the last relaxation they will
not be relaxed again during the execution of the method. It is only necessary to traverse the whole
grid v/Bg times in this case.

18

C perform NU iterations
do k=1,NU
C relax red points
do z=1,N-1
do y=1,N-1
do x=2-mod(y,z,2), N-1, 2
RELAX (x,y,2)
enddo
enddo
enddo
C relax black points
do z=1,N-1
do y=1,N-1
do x=1+mod(y,z,2), N-1, 2
RELAX(x,y,2)
enddo
enddo
enddo
enddo

Figure 4.1: Pseudo-code for standard red-black Gauss-Seidel implementation, the RELAX macro
calculates the following: Uy, = (Fuy,: — Way,:Us—1,y,: — Ezy2Ust1,y,2 — Sey,2Usy—1,2 —
Nz,y,zUw,y-H,z - Bw,y,zUw,y,z—l - Tw,y,zUzyy,Z-i-l)/Cw,y,z-

do k=1,NU
do z=1,N-1
do y=1,N-1
do x=2-mod(y,z,2), N-1, 2
C relax red point and black point below
RELAX (x,y,2)
RELAX(x,y,z-1)
enddo
enddo
enddo
enddo

Figure 4.2: Pseudo-code for fused red-black Gauss-Seidel implementation.

A different relaxation-order is achieved by interchanging the k- and the X/Y-loops. In this
case, all red points in the Z-plane are relaxed, continuing with the black points in plane Z — 1
and succeeding planes, as determined by the iteration blocking factor. Another variation is, of
course, to only interchange k- and x-loop. The method then traverses the grid in a line-wise
manner. Still, for these two variants the number of points to be kept in cache remains the same,
but differences may be seen due to the different behavior of the innermost loop. In most cases, the
x-loop will be repeated more often than the k-loop, allowing the compiler to perform more pipeline-
optimizations, and reduce the number of branch operations and mispredictions. The differences of
the loop interchanges for 1-way blocking are illustrated in Figure 4.5.

In the experiments performed, another version of this method was introduced. For the standard
case of a V(2,2)-cycle, a hand-unrolled version of the code in Figure 4.4 was used. Theoretically
this code should perform similar to the normal version, as the blocking-constants were known to
the compiler. Practically, depending on the compiler used, noticeable differences in performance
were observed.

4.5 2-Way Blocking

As for bigger problem sizes the required number of planes will not fit in cache, it is necessary to
reduce the working set even more, by blocking the next loop, normally the x-loop. In this case

19

a) 1 b) 1
Fused £ Blocked —Xs
Loops \// X Iterations \// X
oF 1y A0 . oF 1y 0 .
Seoe ce® Plane i ‘oo ‘eoe Plane i
L] LI
2 6
D @p
O (@)
& z (@Y A LOYAY Plane i-1

: o,
Y @ @
& X L \

@ Red grid point Point updated once
] \

Black grid point @’ Point updated twice

/270 /] Point to update e Point to updgte for
[]/ inthe current step the second time

in the current step

Figure 4.3: a) Fused Loops: the red point in plane i and afterwards the black point below in plane
i-1 are relaxed together b) Blocked Iterations: displayed are two blocked iterations, red and black
points in different planes are updated in one step.

line-segments of red and black points in adjacent planes are relaxed, with a memory-requirement
of about 3 * (Bx +2) * (2% Bk +2) * U + Bx * (2 Bgk) * V when blocking the X-loop by Bx.

4.6 3-Way Blocking

The disadvantage of the 2-way blocking technique is the fact that the reuse of the blocked loops
is relatively bad, as only points along the blocked line-segment are reused, but none with different
Y-values. Hence, the Y-loop can be blocked, to also enable a reuse of neighboring points in the
same plane. 3-way blocking can be imagined as partitioning the plane into smaller rectangular areas
called tiles, first relaxing all red points there, then moving on to the black points of plane Z — 1,
and so on. When all tiles along the Z-axis are relaxed (2 x B in this implementation), the next
tile in plane Z is selected, as shown in Figure 4.7.

Taking into account the intended number of blocked iterations, the tile size (Bx, By) can now
be selected according to the cache capacity. The relaxation of one set of tiles now uses roughly

do kk=1,NU/BLOCKK, BLOCKK
do z=1+BLOCKK,N-1
do y=1,N-1
do x=2-mod(y,z,2), N-1, 2
C blocked iteration loop
do k=0, BLOCKK-1
RELAX (x,y,z-k)
enddo
enddo
enddo
enddo
enddo

Figure 4.4: Pseudo-code for a red-black Gauss-Seidel implementation with blocked iteration loop
and loop interchange.

20

a)
1-Way
Blocked

5 b)
2-Way
Blocked

Move to
next plane

L) i
=
=

Loop order K-Z-Y-X-Bk Loop order K-Z-Y-Bk-X Loop order K-Z-Bk-Y-X

. . Red and black point relaxed once @ @ First relaxation in the second step

=y [=]
. ' Red and black point relaxed for the second time Second relaxation in the second step

Figure 4.5: a) 1-Way blocking with three different loop interchanges. The loop order is displayed
above each set of planes. b) 2-way blocking is achieved by blocking the X-loop of the second 1-way
blocked variant with loop order K-Z-Y-Bk-X.

(Bx +2) % (By +2)* (2% Bk +2) *U + Bx * By = (2 Bg) * V bytes.

4.7 4-Way Blocking

When all four loops of the standard program from Figure 4.2 are blocked, the program will look as
shown in Figure 4.6.

Now, a smaller cuboid with dimensions (Bx, By, Bz) is moved through the grid. For each
blocked iteration the cuboid is shifted by —1 in all three directions to obey all data dependencies.
Now the same red points relaxed in the cuboid with k£ = 0 are relaxed for the second time for k£ = 2,
likewise the black points for £ =1 and k& = 3, respectively. The shape of these intersecting cuboids
is illustrated in Figure 4.7.

The points in the grid are, in contrast to the other methods described, not updated in a plane-
wise manner anymore. In previous methods, before moving to the red points in plane i + 1, all
points in plane ¢ were updated, likewise all black points in plane ¢ — 1 were updated, all red ones
in plane ¢ — 2 for the second time, and so on. Now the updating of the grid points always takes
place as soon as possible. Stopping at any point in the relaxation process, there is now a region of
untouched points, behind those a layer of red points updated once, then a layer of relaxed black
points, then one of red points updated for the second time, until, finally there is a region of points
which are updated Bk times (if more than two iterations are blocked there are additional layers).

The drawback for this method is of course the increased overhead, as e.g. all points with
z,y,%z < Bg have to be prepared accordingly. Furthermore the cache requirements quickly exceed
the capacities of most modern architectures, resulting in small values for Bx,By and Bz. These
shortened loops also have the negative effect that the chance of pipeline stalls increases. Thus, it is
convenient, when manually choosing the blocking factors, to increase Bx and decrease By and Bz
accordingly. The needed memory can be approximated by (Bx + 2+ Bk) * (By + 2+ Bk) *(Bz +
2+ Bk)*U + (Bx + Bk) *(By + Bk) * (Bz + Br) * V. The approximation error for the memory
requirement will of course grow for bigger Bx, but will work fine for standard values around two.

21

do kk=1,NU/BLOCKK, BLOCKK
do zz=1+BLOCKK,N-1, BLOCKZ
do yy=1+BLOCKK,N-1, BLOCKY
do xx=1+BLOCKK,N-1, BLOCKX

C relax points in (BLOCKX,BLOCKY,BLOCKZ) cuboid
do k=0, BLOCKK-1
do z=zz, min(N-1,zz+BLOCKZ)
do y=yy, min(N-1,yy+BLOCKY)
do x=xx+mod (xx+y+z ,2), min(N-1,xx+BLOCKX), 2
RELAX(x-k,y-k,z-k)
enddo
enddo
enddo
enddo

enddo
enddo
enddo
enddo

Figure 4.6: Pseudo-code for a red-black Gauss-Seidel implementation with 4-way blocking.

4.8 Skewed Blocking

For 2D, a blocked method using skewed loops is evaluated in [Wei01, Pfa00]. As this technique can
not be directly adapted to 3D, due to the more complex data dependencies, loop skewing will not
be discussed in this thesis. Problems arise, when, across different planes, the tiles of for example a
4-way blocked Gauss-Seidel implementation are skewed. In cases like this, the alternating structure
of red and black points in adjacent planes quickly leads to violations of data dependencies.

22

a) b)

3-Way 4-Way
Blocked Blocked
(single update step,
only tiles are displayed) Tile to update
Update red points red points in
Plane i
Update black points 2
Plane i-1 .) Tile to update
black points in
3 Update red points
for the second time
) Update black points
. for the second time
Update red points 4
for the second time
Plane i-2 c)
4-Way
Blocked
(points that
N AL AL AL N AL are updated
V /G AV AV NV AV for a tile siz e
== ==y Update black points of 4xdxd)
. = (= for th i
Plane i-3 IﬂmEﬂﬂE’ or the second time
'EI' 'EI' '-
4 %
z
' . Red and black point relaxed once [Y
. . X
Red and black point relaxed for the second time

Figure 4.7: a) Update step for 3-way blocked red black Gauss-Seidel b) Tiles that are updated for
a 4-way blocked method c) Points that are updated for 4-way blocking and a tile size of 4x4x4.

23

Chapter 5

Results

The performance results for the data access and layout optimizations will be presented and ex-
plained in this chapter. Furthermore, results for homogenous problems, and problems with constant
coefficients will be shown.

5.1 Variable coefficients

Red black Gauss-Seidel implementations using the different blocking techniques where tested on
different platforms, using problem sizes of 92, 173, 333, 64 and 129. While the smallest problem
only needs 100KB, the largest one uses almost 300MB, which exceeds the level 3 cache size of
all machines. For details on the Platforms used please read Appendix A. The graphs show a
comparison for the performance for the whole multigrid application using a V(2,2) cycle, instead of
only the smoothing function. If the chosen blocking factors get too large for the coarser grids, the
standard Gauss-Seidel function with cache-aware loop order is executed.

The first two bars in each graph show the importance of padding, which will be explained in
more detail in Chapter 6. For all other runs, suitable padding and tile sizes where determined using
a search of the parameter space.

It can be seen, that the overall performance increase for large problems, is around 20% for
Platform F (Figure 5.4) up to 60% on Platform C (Figure 5.3) , and 120% on Platform A (Fig-
ure 5.1). For smaller grids, the performance increase varies, but is still 40% on Platform A. The
Fused method performs particularly well on all machines for smaller problems, as it implies the low-
est loop overhead of all methods, a compact loop kernel, and is very effective, if the whole problem
can be held in cache.

Generally, the performance of the more complex variants, especially 3- and 4-way blocking, is
disappointing. Only on Platform F, a small increase in performance for 4-way blocking in compar-
ison to a fused traversal can be seen. To investigate this behavior more in detail, DCPI was used
on Platform A for a problem size of 1293. The results can be seen in Figure 5.2. While the level 3
cache misses are decreased by a factor of roughly 2, the TLB misses increase by a factor of more
than 3. This can be explained by the much more distributed access order of the 4-way blocking. It
accesses data items across many different planes, which quickly fills the TLB, which has a capacity
of 128 entries on this platform. Due to the high memory requirements of the problem, the blocking
sizes have to be adapted to the level 3 cache to be efficient, but this on the other hand leads to
relatively large tiles which then cause problems with TLB misses. To avoid these, for example data
copying could be used [TGJ93].

Another effect is the relatively small size of the grids. Due to the increased memory requirements
for the coefficients and the right-hand side, only grids up to 129% nodes were considered. Hence, the
points in one plane are still relatively close together. Three lines of the unknown array fit into the
cache of all platforms under consideration, allowing to reuse all four neighboring points in the same
plane. As the performance results have shown in 2D, the more complex blocking techniques are
not efficient for smaller problems, but guarantee a relatively constant performance even for large
problems. Furthermore, the performance increase due to reuse across different adjacent planes is
rather small, and the growing loop overhead of 2-,3- and 4-way blocking can spoil the performance

24

gains.

On Platform A, the performance of the hand-optimized 1-way blocking variant yields interesting
results. In theory, it should perform exactly like the normal 1-way blocking, as the only difference
is the innermost loop blocking the iterations, which is not controlled by a constant in this case, but
unrolled for 2 blocked iterations by hand. This unrolling allows the compiler, DEC Fortran 7.1 in
this case, to better optimize software pipelining and prefetching, due to the simpler structure of
the kernel. On other machines this increase is less significant. Furthermore, this kind of unrolling
can not be easily done for the 2-, 3- and 4-way blocked methods, and is not a cache optimization
per se. It only allows the compiler to more efficiently restructure and pipeline the operations, and
more easily recognize the reuse of data items. When too much unrolling is done, the code may not
fit in the instruction cache any more and lead to poor performance due to instruction cache misses.
This can quickly be the case when effective tile sizes for e.g. 3-way blocking are unrolled.

5.2 Constant coefficients

With constant coefficients, the multigrid program requires two arrays for each grid level; one for the
unknowns, and another one for the right-hand side values. In Figure 5.5 it can be seen, that reducing
the number of arrays from nine to two, results in a performance gain of roughly 20 MFLOPS for
each program on Platform A. The MFLOPS rates for a problem size of 173 are even higher than
those for 92, which is a result of the very short loops and the resulting poor optimizations in the
latter case.

For arrays of 1292 the relative performance of the nine methods is comparable to the variable
coefficient case. The 1-way blocked hand optimized version is still the fastest one, and the more
complex methods run slower than this and the loop interchanged 1-way blocking. The performance
increases by more than 50% for 1292, and less for the smaller problems.

Again, the 1292 case was analyzed with DCPI on Platform A, the resulting cache miss rates
can be seen in Figure 5.6. While the effects on the Level 1 and 2 Cache Misses vary, the Level 3
Cache Misses are more than halved once blocking is used. In contrast to the variable coefficient
case, the TLB Misses now only increase notably for the 4-way blocked method, but it also has the
lowest Level 2 Cache miss rate in this case. The effect of the hand unrolled loop for the 1-way
blocked method is also not as big, which indicates that the smaller loop kernel, due to the missing
coefficients, is better optimized in all cases.

5.3 Constant coefficient and homogenous problems

For the solution of a homogenous problem with constant coefficients, only a single array of unknowns
is necessary on the finest grid. Still it is necessary for all coarser grids to include a right hande
side due to the structure of the multigrid algorithm. For these grids, a standard relaxation function
as described in section 4.2 was used. Hence, the results are not directly comparable to those of
section 5.2, as the optimized version of the relaxation function is only used on the finest grid.
In this case the 1-way blocked hand optimized version runs around 18% faster than the standard
version with padding. The methods employing more blocked loops are considerably faster than
the standard method, but still show a disappointing performance. The performance rates for all
problem sizes can be seen in Figure 5.7. As the 65 problem still fits completely into the Level
3 Cache of Platform A, the performance is much higher than that of the larger problem. For the
smallest two problems, the MFLOPS rates are almost identical to the constant coefficient case, and
only from 33% on, a positive effect of the reduced memory requirement can be seen.

The DCPI results, shown in Figure 5.8, are similar to those of the constant coefficient case. The
TLB influence is even smaller for the 4-way blocked method, but the Level 3 Cache Misses are less
than half of those of the standard case.

25

Standard w/o padding =
120 - Standard w/ padding B
Fused I
] . 1-Way Blocking s
1-Way Blocking with loop—interchange =
1000 -pqpy - 1-Way Blocking hand—optimized B
2-Way Blocking
3-Way Blocking
4-\Way Blocking s
8O0 1 Bt
O mEEE 'TBEREDE 'BEBRBEE
‘ae N B B BB BEEEE R ERER BT BB e B
20
0

9

17 33 65 129

Figure 5.1: MFLOPS rates for multigrid program with problem sizes of 92,172,332, 65% and 1293
using all nine red-black Gauss-Seidel implementations. Measurements were made on Platform A.
The rr again denotes a standard run with grid size 129% and standard relaxation.

L1 Cache Misses

L3 Cache Misses

3e+08
Standard w/o padding m— Standard w/o padding m—
Standard w/ padding s 1.2e+08 oo Standard w/ padding
Loops Fused Loops
25e+08 e - 1-Way B . 1-Way ===
1-Way w/ Loop-interchange mmmmmm l—Wa)(Nw/ Loop-interchange
1-Way Hand-Optimized m=== 1le+08 - 1-Way Hand-Optimized E====
2-Way mmmm %—Way —
2e+08 — ay =1
o
§ B0
=
1.5e+08 [~ - ©
5 6e+07
[+
o
- 41 9
1e+08 4e+07
5e+07 i 2e+07
0 0
6e+07
Standard w/o padding = 3e+06 -
Standard w/ padding Standard w/o padding m—
used Loops Standard w/ padding
Be07 oo C 1-Way | Fused Loops M
1-Way w/ Loop—interchange 2.5e+06 i -Way mmmm .. -
1-Way Hand-Optimized === 1—Waw/ Loop-interchange
2-Way mmmm 1-Way Hand-Optimized ===
4e+07 3-Way mmmm 2-Way o
¢ 26+06
g
3et07 I~ N gy S 150406
m
-
=
2e+07 1~ 1e+06
1e+07 |~ 500000
0 0

Figure 5.2: Number of L1 Cache Misses (top left), L2 Cache Misses (top right), L3 Cache Misses
(bottom left) and TLB Misses (bottom right). All results were measured on Platform A with DCPI
for a problem size of 1293, using the same paddings as in Figure 5.1.

26

200 - Standard w/o padding I —
Standard w/ padding

Fused mmmm

1-Way Blocking

1-Way w/ loop—interchange
1-Way hand—-optimized
2-Way Blocking mmmmm _
3-Way Blocking
4-\Way Blocking

150

100 i - BN H = | e

50

9 17 33 65 129

Figure 5.3: MFLOPS rates for multigrid program with problem sizes of 92,172,332, 65% and 1293
using all nine red-black Gauss-Seidel implementations. Measurements were made on Platform C.

Standard w/o padding —

Standard w/ padding

Fused HEEEE |
) . 1-Way Blocking
1-Way Blocking with loop—interchange =
1-Way Blocking hand—optimized
2-Way Blocking
3-Way Blocking

e B T ' B 4-Way Blocking mmmmm |

200 -l

100

50

9 17 33 65 129

Figure 5.4: MFLOPS rates for multigrid program with problem sizes of 92,172,332, 653 and 1293
using all nine red-black Gauss-Seidel implementations. Measurements were made on Platform F.

27

160

140

120

100

80

60

40

20

9 17

1-Way Blocking with loop—interchange
1-Way Blocking hand

33

XYZ =
Standard w/ padding
Fused I —

4-Way Blocking mmmmm |

65

1-Way Blocking

—ogtlmlzed [
2—-Way Blocking
3-Way Blocking

129

Figure 5.5: MFLOPS for the constant coefficient multigrid program running on Platform A with
suitable padding and an inhomogeneous problem using access oriented data layout.

Figure 5.6: DCPI results for the constant coefficient multigrid program with unknowns

Standard w/o padding —

1.2e+08 - Standard w/ padding .
Fused Loops
. 1-Way
1—Wa)(l\\;v/ Loop-interchange
1e+08 1-

‘ay Hand—Optimized
2-Way mmmmm

8e+07 [~
6e+07 [~
4e+07 [~
2e+07 [~
0
1e+07
Standard w/o padding =
Standard w/ padding .
Fused Loops s
i -Way Hmmm
8e+06 [- l—V\ia)(A\;v/ Loop-interchange M —

6e+06 [~

4e+06 [

2e+06 [~

hand side arrays for all grids.

ay Hand—Optzlm\;\zled [

5e+07
4.5e+07

4e+07

1=

3.5e+07 [~

3e+07

2.5e+07 —

2e+07

1.5e+07 —

1e+07 —

5e+06 —

0

200000

150000

100000

- 1—Wa)wv/ Loop—intercha_ng% _——

Standard w/o padding ==
Standard w/ padding . _|

Fused Loops

1-Way .

‘ay Hand—Optimized mmmmm
2-Way

Standard w/o padding =
Standargi: w/ gaddlng ——
use!

-Wa
1-Way w/ Loop—interqhqngg
1-Way Hand-Optimized

2-Way o

50000 —

28

Loops

and right-

Standard w/ paddlng I—

Fused I
] _ 1-Way Blocking C——
1-Way Blocking with loop—interchange
120 - s 1-Way Blocking hand—ogtlmlzed I—
2-Way Blocking
3-Way Blocking C——

100 [R T A S G R

140 [

8O [BB T T W

6o M | - 2 10N s

40

20

9 17 33 65 129

Figure 5.7: MFLOPS for the multigrid program running on Platform A with suitable padding and
a homogenous problem with constant coefficients, hence, with only a single array for the unknowns
on the finest grid.

2e+08 [Standard w/o padding = :
Standard w/ Badding e S Standard w/o padding = |
Fused Loops 6e+07 Standard w/ padding ==
-Way Fused Loog)s/ |:|_
1-Way w/ Loop-interchange E==== L1
1-Way Hand-Optimizéd —=2 L | 1-Way w/ Loop-interchange mmml |
1.56+08 [— 5e+07 1-Way Hand OmZIT\;\ZIS?/ —
3-Way
% 4e+07 — [l e
1e+08 z
€ @
S 3e+07 B R
<
8}
~N
-
2e+07 —
5e+07 [~
le+07 —
0 0
Standard w/o padding =
Standard w/ padding E—2 300000
1e+07 - Fused Loops Hmmmm _| Standard w/o padding =
. 1-way Standard w/ padding ——=2
1-Way w/ Loop-interchange s Fused Loops
1-Way Hand-Optimized E—2 250000 o 1-Way—=a E
e = Y R e B
8e+06 3-Way 1 Y pZ—Way
200000
6e+06 — M | %
S 150000
[as]
-
4e+06 — I B oo =
100000
2e+06 1~ 50000 -

Figure 5.8: DCPI results for the multigrid program only with the array of unknowns on the finest
grid.

29

Chapter 6

Padding

The importance of the padding technique, which was described in Section 1.3, can be seen in
the Figures 5.1, 5.3 and 5.4 from Section 5.1. The first two bars for each problem size show the
performance increase due to appropriate padding. For a problem size of 129% the MFLOPS increase
by roughly 6% to 50%.

The difficulty here lies in the selection of the correct parameters, as for the case of an access-
oriented data layout, there are 5 parameters for padding alone. Padding in X and Y dimension for
each of the two arrays, and an inter-array padding to align the relative addresses for the unknown
array and the array holding the coefficients with the right hand side. For the blocked variants of
the Gauss-Seidel smoother, the blocking factors also have to be chosen according to the cache size,
adding another one to four parameters. The value for blocking the iterations may be fixed due to
the V-cycle parameters, which are both 2 in the reference implementation.

Generally, different approaches to the parameter selection can be used. The first, and most
direct one, which was also used in Chapter 4 is to exhaustively search the parameter space for the
best parameters. This is legitimate when taking into account the speed of hardware and compiler
development, and that analytical models can only insufficiently include all factors that may be
necessary. As proposed in [WD98], the exhaustive search could be done once upon installation of a
software package or library, which could from then on work with values that have empirically shown
to be optimal in the parameter space searched.

On the other hand, heuristical and analytical approaches have been proposed by [Riv01, RT00].
In the following, the applicability of one of the analytical approaches described in [Riv01] will be
evaluated.

6.1 Padding Size Selection Theory

Once an access to a single data item in a tile leads to a conflict miss, the following accesses will also
conflict with other data items in the cache. To select a tile size and suitable padding for the biggest
possible tile fitting in a cache with size C, the following formulas have been proposed in [Riv01].
The dimensions of the array are denoted D,,D,, and D, respectively, while T, determines the
minimum number of planes which have to be held in cache. T, is determined by the way the
method is blocked. For a fused Gauss-Seidel, T, equals four, while e.g. for 1-way blocking, T, has
to be 2% By, + 2, where By, is the iteration blocking factor. For 4-way blocking, an additional B, — 1
planes have to be held in cache, B, being the factor by which the Z-loop is blocked.
T, = o[1082 \/C/Trinz |

T, = o[1og2 v/C/T- |

T, = C/(T.T:)
Dp, = 2T,|(D,+3T,—-1)/(2T,)] — T,
Dpy = 2T,[(Dy+3T,—-1)/(2T,)] - T, (6.1)

With Dp, and Dp, the padded array dimensions have been calculated. To implement a non-
standard padding as described in Section 1.3 the array can be declared with dimension D, and

30

padded by (Dpg * (Dpy — Dy) mod C). For the resulting tile dimensions T,T, and T, the
size of the relaxation stencil has to be taken into account. The 7-point stencil of the reference
implementation includes elements with distance 1 into the calculation. Thus 2 has to be subtracted

from each tile dimension, which gives the blocking factors for all three loops as (T, — 2),(Ty — 2),
and (T, — 2).

6.2 Proof

The following proof has been proposed by G. Riveral. It assumes a direct mapped cache, and thus
also works for set-associative caches.

Given two references to different array elements in the same tile (T, Ty, T;), let D = d; + dy *
Sz +d, xSy %Sy, where d;,d,, d, are the differences of the two points in X,Y and Z dimension, and
Sz, Sy, S- are the dimension of the array which is accessed. It has to be shown that (D mod C) #
0,Vd;,d; < T;,i € {=z,y,z}, simply meaning that no two different data items are allowed to be
mapped to the same cache location.

Assumptions:
A - di < Ty
Ay : not(d, =dy, =d, =0)
A3 : C= 2k

Ay - C=TpxTyxT,
As : S8,/T,,S,/T, odd integers
which is equivalent to GCD(C, S;) = T;
(6.2)

For each line the used assumptions will be written in parentheses at the end of the line. In the
following RP(z,y) will denote that x is relatively prime to y.

i) d, #0:
dy mod T, # 0 (A41,d;#0)
dy + Ty * (dy * (S3/Ty) +d. % (Sy/Ty) * Sy) mod T, # 0
DmodT, # O
DmodC # 0 (Ay)
ii) d, =0,d, # 0:
dymodT, # 0 (Ai,dy #0)
dy*xT, mod T, xT, # 0
dy * Ty % (Sz/Ty) mod T, T,y # 0 (As, Ay, RP(S;/T%, Ty xT)))
dy*Symod T, *T, # 0
de +dy*xSymod T, xT, # 0 (dy =0)
dp +dyxSg +TpxTy*(d, x (Sy/Ty) * (Sy/Ty)) mod T, xT,, # 0
Dmod T, xT, # 0
ifi) d, = dy = 0,d, # O:
d, mod T, # 0 (A1,d,#0)
d;*TpxTymod T, xTyxT, # 0
dy* Ty x Ty x (S /Ty) % (Sy/Ty) mod Tp Ty xT, # 0 (As, As, RP((S;/Ty) % (Sy/Ty), Ty * Ty *T))
d, xSy xSymod T «TyxT, # 0

I This proof is previously unpublished, and thus shown here completely.

31

d, xSy xSy modC # 0 (Ag)
dp +dyxSg+d, xSy «SymodT, # 0 (d; =d,=0)
Dmod C # 0 (A4)

Note that Assumptions 1 to 5 are fulfilled, if Equation (6.1) is used to determine tile sizes and
padding.

6.3 Results

6.3.1 For the reference multigrid program

Within the scope of this thesis, the padding approach was tested for the reference multigrid program
with its two arrays, on Platform A optimizing for the level 2 cache, which is 96K on this machine.
For different problem sizes, no performance gain could be measured in this case. This might not be
unexpected, as Equation (6.1) does not include the number of involved arrays, which is a significant
difference.

Furthermore, the method using Equation (6.1) is not transferable to this case, as the access
patterns of the array of unknowns, and the array containing the right hand side and coefficients
are different. The first one is accessed in spatial groups, while the second is accessed strictly
serially. The right hand side and coefficients are never reused, except across different iterations,
while each unknown is needed for the calculation of its six neighbors. So it is not efficient to apply
Equation (6.1) to both arrays, as this does not avoid conflicting accesses to the different arrays.
Still the unknowns require only a small part of the total memory (1/9 in this case) and thus the
correct storage of the other arrays, inflicting as few conflicts as possible, is important.

Furthermore it is not possible to include any kind of cache memory distribution, to limit the
space each array should require in cache. The cache organization algorithms can currently not
be changed by an application, making it impossible to reserve a larger part of the cache for the
unknowns, and a smaller one for the other arrays, for example.

It is not efficient either to provoke conflicts of the coefficients array to achieve this kind of memory
distribution. This could be imagined to have a positive effect, as there is almost no reuse of these
values, and provoking conflicts in this array would avoid any conflicts with the array of unknowns,
resulting in a limited cache space where all of these values are stored. The poor performance in
this case results from the conflict misses in a lower cache level (Level 3 in this case), as reuse there
is still important, but the size of a lower cache level is usually a multiple of the lower one. This
padding could be calculated as Px = k — Dx, where Px is the resulting padding in X-direction,
Dy is the dimension of the array in and the cache size is a multiple of k: Cs = k x 55 (C2 and C3
are the sizes of the Level 2 and 3 Caches, sy and s3 arbitrary integer values). So, if the coefficients
array is padded to have conflict misses in this cache level, the lower level usually has the capacity
C3 = k * so * s3, and thus the accesses also lead to conflicts there.

6.3.2 For a homogenous problem

To evaluate the effects for a single array, the multigrid program without extra arrays for coefficients
was used. The right hand side arrays are needed only for the coarser grids. In this case, the
analytical padding with Equation (6.1) yields better results than no padding, but is not optimal.

Running time in seconds | MFLOPS
Multigrid program without padding 9.2 63.95
Padding and tiling using Equation (6.1) 7.7 76.37
Padding and tiling from exhaustive search 6.8 86.48

It is certainly useful to avoid pathological cases, but the alignment of the data for a multigrid
program is not that bad (the grids normally have a size of 2¥ + 1), and the non-conflicting ar-
rangement for one cache level is not the only effect that determines the performance. The effects
resulting from multiple cache levels also need to be taken into account, and the TLB cache can
have a significant impact on the performance for larger tile sizes, and higher numbers of blocked
iterations.

32

(6.3)

6.3.3 In general

Due to the large parameter space that needs to be searched for a blocked 3D Gauss-Seidel imple-
mentation, an analytical approach would be very useful. Still, all arrays needed for the computation
need to be taken into account, as well as all levels of cache and the TLB, which makes it hard to
find non-conflicting paddings. The TLB could also be included, by taking into account the page size
and capacity, and then checking for a given tile size and padding, if the accesses lead to an overflow.
This would also work easily for multiple arrays, while the prevention of conflicts for multiple arrays,
that might have different access patterns, seems to require heuristical or empirical approaches. Still,
for calculations on only a single array it is a very efficient way to rule out pathological cases.

33

Chapter 7

Conclusions

Several cache optimization techniques for a 3D multigrid application were evaluated in this thesis.
It could be shown, that for an efficient program a cache-aware implementation and ordering of loops
is definitely important. This includes a good data layout — for 3D, similar to 2D, an access-oriented
data layout has shown to allow the best exploitation of spatial locality. The effect of padding varies
on different platforms, but can increase the performance up to 60%, while architectures like the
Pentium 4 used in Platform F show a smaller increase. The most efficient blocking techniques also
vary from platform to platform, but, up to the 1-way blocking, achieve good results. The more
complex blocking variants are more efficient for bigger grids, and other effects like TLB cache misses
start dominating the performance. To avoid these, data copying techniques, or the calculation of
maximum tile sizes, still have to be evaluated.

The analytical padding approach has shown to be inapplicable to the 3D multigrid program,
other ways of integration should be investigated, as exhaustive searches for 3D can take huge
amounts of time due to the large parameter space.

While blocking and padding variants need to be tailored to compiler and architecture, be it
automatically or by hand, the multigrid algorithm itself can also be adapted more to the cache
architectures of modern computers. The use of patch-adaptive multigrid algorithms [LR97] or on
the fly calculation of matrix entries, for example, are current research projects.

34

Appendix A

Machine Specifications

A.1 Platform A

e CPU: Alpha 21164

e Workstation: DEC PWS 500au

e Name: fauia3l.informatik.uni-erlangen.de

e L1 Cache: 8KB Data, 8KB Instructions, direct mapped, line size 32 bytes
e L2 Cache: 96KB, 3-way set-associative, line size 32/64 bytes

e L3 Cache: 4MB, direct-mapped, off chip module

e TLB Size: 128 entries

e Operating system: DIGITAL UNIX 4.0D

e Compiler: DEC Fortran77 5.1

o Compiler flags: -extend_source -fast -04 -pipeline -tune host -arch host -g3

A.2 Platform B

e CPU: Alpha 21164

e Workstation: DEC PWS 500au

e Name: fauia30.informatik.uni-erlangen.de

e L1 Cache: 8KB Data, 8KB Instructions, direct mapped, line size 32 bytes
e L2 Cache: 96KB, 3-way set-associative, line size 32/64 bytes

e L3 Cache: 4MB, direct-mapped, off chip module

o TLB Size: 128 entries

e Operating system: Compaq Tru64 UNIX V5.0A

e Compiler: DEC Fortran90 5.3

e Compiler flags: -extend_source -fast -04 -pipeline -tune host -arch host -g3

35

A.3 Platform C

e CPU: Alpha 21264

e Workstation: Compaq XP 1000 professional

e Name: fauia35.informatik.uni-erlangen.de

e L1 Cache: 64KB Data, 64KB Instructions, 2-way set-associative, line size 32 bytes
e 1.2 Cache: 4MB, direct-mapped, off chip

e TLB Size: 128 entries

e Operating System: Digital UNIX V4.0F

e Compiler: DEC Fortran77 5.2

e Compiler flags: -extend_source -fast -04 -pipeline -tune host -arch host -g3

A.4 Platform D

e CPU: AMD Athlon 700MHz

e Name: fauia28.informatik.uni-erlangen.de

e L1 Cache: 64KB Data, 64KB Instructions, 2-way set-associative
e 1.2 Cache: 256KB, direct-mapped, off chip

e TLB Size: 32 entries L1-TLB, 256 entries L2-TLB

e Operating System: Linux with Kernel 2.4.10

e Compiler: GNU Fortran77 2.95.3

e Compiler flags: -03 -fforce-addr -ffixed-line-length-none

A.5 Platform E

e CPU: AMD Athlon 700MHz

e Name: fauia25.informatik.uni-erlangen.de

e L1 Cache: 64KB Data, 64KB Instructions, 2-way set-associative
e 1.2 Cache: 256KB, direct-mapped, off chip

e TLB Size: 32 entries L1-TLB, 256 entries L2-TLB

e Operating System: Linux with Kernel 2.4.10

e Compiler: GNU Fortran77 2.91.66

e Compiler flags: -03 -fforce-addr -ffixed-line-length-none

36

A.6 Platform F

e CPU: Intel Pentium 4 1.5GHz

e Name: fauiad43.informatik.uni-erlangen.de

e L1 Cache: 8KB Data

o L2 Cache: 256KB

e TLB Size: 64 entries

e Operating System: Linux with Kernel 2.4.10
e Compiler: GNU Fortran77 2.95.2

o Compiler flags: -03 -fforce-addr -ffixed-line-length-none

A.7 Platform G
e CPU: Intel Celeron 366MHz
e L1 Cache: 16KB
e L2 Cache: 128KB
o TLB Size: 32 entries
e Operating System: Linux with Kernel 2.4.10
e Compiler: GNU Fortran77 2.95.3

e Compiler flags: -03 -fforce-addr -ffixed-line-length-none

37

Appendix B

3D Multigrid Implementation

Description of red/black Gauss-Seidel subroutines for the Fortran77 3D multigrid implementation:

rbszyx: Standard red/black Gauss-Seidel implementation with two loop nests and loop order
K-Z-Y-X.

rbszxy: The same as rbszyx but with loop order K-Z-X-Y.

rbsyzx: The same as rbszyx but with loop order K-Y-Z-X.

rbsyxz: The same as rbszyx but with loop order K-Y-X-Z.

rbsxzy: The same as rbszyx but with loop order K-X-Z-Y.

rbsxyz: The same as rbszyx but with loop order K-X-Y-Z.

rbfuse: Fused implementation.

rbtile: 2-way blocked X- and Y- loops, no blocking of iterations.

rblw: 1-way blocked red/black Gauss-Seidel with loop order K-Z-Y-X-Bk
rbiwli: Further loop interchange resulting in loop order K-Z-Y-Bk-X.
rbilwo2: The same as rblw but hand unrolled for two blocked iterations.
rb2w: 2-way blocked, loop order K-Z-Y-X-Bk-Bx.

rb3w: Blocked iteration,X- and Y- loops.

rbdw: All four loops blocked.

38

List of Figures

1.1
1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3
34

3.5

4.1

4.2
4.3

Stencil resulting from the described discretization. 3
Standard padding can be seen on the left, non-standard padding, which introduces a
certain number of data items, not necessarily a multiple of the y-dimension, on the
right. . . L L e e e 5
a) Standard matrix-matrix multiplication implementation b) Blocked version of the
same code, two new loops are introduced, blocking the X and Y loop of a) by BI and
BT, e 6

To prevent the compiler from interchanging the iteration and x-loop an integer with
the value zero is added to the z-coordinate in each iteration. 8
Performance results on Platform A (top left), Platform C (top right), Platform F
(middle left), Platform D (middle right) and Platform G (bottom left). The small
rr indicates a run that can be seen in other pictures, for a similar configuration
(standard relaxation, 129% grid), t00. 10
Performance results for Platform B on the left, and Platform E on the right. 10

Memory organization for the three different data layouts. At the top the nine separate
arrays for the bandwise data layout can be seen. Below the array for the unknowns,
and the array for the remaining variables are depicted (access-oriented data layout).
The equation-oriented data layout uses only a single array for all data. 11
MFLOPS rates of the multigrid program, comparing the three different data-layouts
for different problem sizes. All MFLOPS rates were measured using a suitable
padding for each problem size and data layout, and the best possible loop order.
Top left for Platform A, top right Platform C, bottom left Platform D, and Platform
F bottom right. 13
Example of passing a workspace offset to a function, that treats it as a 3D array. . 14
MFLOPS rates for different paddings on various architectures, using the whole multi-
grid program, a problem size of 1292 and the three different data layouts. Platform
A top left, Platform C top right, Platform D bottom left and Platform F bottom
right. . . . L e e 15
Performance results on Platform A for a standard red-black Gauss-Seidel method
with different loop interchanges, on a 1292 grid, using an access-oriented data layout.
A reasonable padding was used for all programs, in contrast to other measurements,
where the best padding was determined separately for each program. The top left
graph shows the MFLOPS rates, top right the L1 cache misses, middle left L2 cache
misses, middle right L3 cache misses, and bottom left the TLB misses. The bars
were ordered in descending MFLOPS order (see top left graph). 16

Pseudo-code for standard red-black Gauss-Seidel implementation, the RELAX macro
calculates the following: Uz y,. = (Fr,y,:=Wa,y,2Uz—1,y,2:—Ez,y,-Ust1,y,:—S2,y,:Us,y—1,-—
NpyUsyit: — BeyUsyoot — To 2Uszi1)/Cagrze + o oooeee e e e e 19
Pseudo-code for fused red-black Gauss-Seidel implementation. 19
a) Fused Loops: the red point in plane i and afterwards the black point below in plane

i-1 are relaxed together b) Blocked Iterations: displayed are two blocked iterations,

red and black points in different planes are updated in one step. 20

39

4.4

4.5

4.6
4.7

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Pseudo-code for a red-black Gauss-Seidel implementation with blocked iteration loop
and loop interchange.
a) 1-Way blocking with three different loop interchanges. The loop order is displayed
above each set of planes. b) 2-way blocking is achieved by blocking the X-loop of the
second 1-way blocked variant with loop order K-Z-Y-Bk-X.
Pseudo-code for a red-black Gauss-Seidel implementation with 4-way blocking.

a) Update step for 3-way blocked red black Gauss-Seidel b) Tiles that are updated
for a 4-way blocked method c) Points that are updated for 4-way blocking and a tile
size of AX4AXA. L e e e e e e e e e e e

MFLOPS rates for multigrid program with problem sizes of 92,172,332, 65 and 1293
using all nine red-black Gauss-Seidel implementations. Measurements were made on
Platform A. The rr again denotes a standard run with grid size 129% and standard
relaxation. L . L L e e
Number of L1 Cache Misses (top left), L2 Cache Misses (top right), L3 Cache Misses
(bottom left) and TLB Misses (bottom right). All results were measured on Platform
A with DCPI for a problem size of 1293, using the same paddings as in Figure 5.1.
MFLOPS rates for multigrid program with problem sizes of 92,173,332, 65° and 129°
using all nine red-black Gauss-Seidel implementations. Measurements were made on
Platform C. e e
MFLOPS rates for multigrid program with problem sizes of 93,172,333, 65% and 1293
using all nine red-black Gauss-Seidel implementations. Measurements were made on
Platform F.
MFLOPS for the constant coefficient multigrid program running on Platform A with
suitable padding and an inhomogeneous problem using access oriented data layout.
DCPI results for the constant coefficient multigrid program with unknowns and right-
hand side arrays for all grids. Lo
MFLOPS for the multigrid program running on Platform A with suitable padding
and a homogenous problem with constant coeflicients, hence, with only a single array
for the unknowns on the finest grid. L.
DCPI results for the multigrid program only with the array of unknowns on the finest
grid. .. e e e

40

28

28

Bibliography

[ABD*97]

[BDQIS]

[BHMOO]

[DHK*+00]

[Dou96]

[DS98]

[FJ98]

[GIFO1]

[GKKSO01]

[Han98]
[HP96]

[KWR02]

[Los98]
[LR97]

[MLWO1]

J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung, R.L.
Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous Profiling:
Where Have All the Cycles Gone? In Proceedings of the 16th ACM Symposium on
Operating System Principles, pages 1-14, St. Malo, France, October 1997.

F. Bassetti, K. Davis, and D. Quinlan. Temporal Locality Optimizations for Stencil
Operations within Parallel Object—Oriented Scientific Frameworks on Cache—Based Ar-
chitectures. In Proc. of the International Conf. on Parallel and Distributed Computing
and Systems, pages 145-153, Las Vegas, Nevada, USA, October 1998.

W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. STAM, 2000.

C.C. Douglas, J. Hu, M. Kowarschik, U. Riide, and C. Weify. Cache Optimization for
Structured and Unstructured Grid Multigrid. FElectronic Transactions on Numerical
Analysis, 10:21-40, February 2000.

C.C. Douglas. Caching in With Multigrid Algorithms: Problems in Two Dimensions.
Parallel Algorithms and Applications, 9:195-204, 1996.

K. Dowd and C. Severance. High Performance Computing. O’Reilly, 1998.

M. Frigo and S.G. Johnson. FFTW: An Adaptive Software Architecture for the FFT. In
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’98), volume 3, pages 1381-1384, May 1998.

J. Mellor-Crummey G. Jin and R. Fowler. Increasing Temproal Locality with Skewed
and Recursive Blocking. In Proceedings of the Supercomputing Conference 2001, Den-
ver, November 2001.

W.D. Gropp, D.K. Kaushik, D.E. Keyes, and B.F. Smith. High Performance Parallel
Implicit CFD. Parallel Computing, 27(4):337-362, March 2001.

J. Handy. The Cache Memory Book. Academic Press, second edition, 1998.

J.L. Hennessy and D.A. Patterson. Computer Architecture — A Quantitative Approach.
Morgan Kaufmann Publishers, second edition, 1996.

M. Kowarschik, C. Weif}, and U. Riide. Data Layout Optimizations for Variable Coeffi-
cient Multigrid. In Proceedings of the 2002 International Conference on Computational
Science, Lecture Notes in Computer Science, Amsterdam, The Netherlands, April 2002.
Springer. to appear.

D. Loshin. Efficient Memory Programming. McGraw—Hill, 1998.

H. Lotzbeyer and U. Riide. Patch—Adaptive Multilevel Iteration. BIT, 37(3):739-758,
1997.

E. Rothberg M.S. Lam and M.E. Wolf. The Cache Performance and Optimization of
Blocked Algorithms. In Fourth Intern. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), Palo Alto, California, April 1991.

41

[P£:00]

[Riv01]

[RTO0]

[SL99)]

[TGJ93]

[TOS01]
[WDOS]

[Weil1]

[WKKRO9]

[Yav96]

[ZZ99]

H. Pfiander. Cache-optimierte Mehrgitterverfahren mit variablen Koeffizienten auf
strukturierten Gittern. Master’s thesis, Department of Computer Science, University
of Erlangen-Nuremberg Germany, 2000.

G. Rivera. Compiler Optimizations for Avoiding Cache Conflict Misses. PhD thesis,
Dept. of Computer Science, University of Maryland, College Park, MD, USA, 2001.

G. Rivera and C.-W. Tseng. Tiling Optimizations for 3D Scientific Computations.
In Proceedings of the ACM/IEEE Supercomputing 2000 Conference (SC2000), Dallas,
TX, USA, November 2000.

Y. Song and Z. Li. New Tiling techniques to improve Cache Temporal Locality. In
ACM SIGPLAN PLDI99, 1999.

O. Temam, E. Granston, and W. Jalby. To Copy or Not to Copy: A Compile-Time
Technique for Assessing When Data Copying Should be Used to Eliminate Cache Con-
flicts. In Proceedings of the ACM/IEEE SC938 Conference, Portland, OR, USA, Novem-
ber 1993.

U. Trottenberg, C. Qosterlee, and A. Schiiller. Multigrid. Academic Press, 2001.

R.C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software. In Pro-
ceedings of the International Conference on Supercomputing, Orlando, Florida, USA,
November 1998.

C. Wei}. Data Locality Optimizations for Multigrid Methods on Structured Grids. PhD
thesis, Lehrstuhl fiir Rechnertechnik und Rechnerorganisation, Institut fiir Informatik,
Technische Universitdt Miinchen, Munich, Germany, December 2001.

C. Weifl, W. Karl, M. Kowarschik, and U. Riide. Memory Characteristics of Itera-
tive Methods. In Proceedings of the ACM/IEEE SC99 Conference, Portland, Oregon,
November 1999.

Irad Yavneh. On Red-Black Sor smoothing in Multigrid. In SIAM J. SCI. COMPUT.,
volume 17, pages 180-192, January 1996.

Z. Zhang and X. Zhang. Cache-Optimal Methods for Bit-Reversals. In Proceedings of
the Supercomputing Conference 1999, Portland, Oregon, November 1999.

42

