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Abstract. Today’s computer architectures employ fast cache memories
in order to hide both the low main memory bandwidth and the latency
of main memory accesses, which is slow in contrast to the floating—
point performance of the CPUs. Efficient program execution can only be
achieved, if the codes respect the hierarchical memory design. Iterative
methods for linear systems of equations are characterized by successive
sweeps over data sets, which are much too large to fit in cache. Standard
implementations of these methods thus do not perform efficiently on
cache-based machines. In this paper we present techniques to enhance
the cache utilization of multigrid methods on regular mesh structures
in 3D as well as various performance results. Most of these techniques
extend our previous work on 2D problems.

1 Introduction

The speed of computer processors has been increasing and will even continue
to increase much faster than the speed of memory components. Hence, current
memory chips based on DRAM technology cannot provide the data to the CPUs
as fast as necessary. This memory bottleneck often results in significant idle
periods of the processors and thus in very poor code performance — in terms
of MFLOPS — compared to the theoretically available peak performances. In
order to mitigate this effect, today’s computer architectures use cache memories
that store data frequently used by the CPU. Caches are usually based on SRAM
chips that, on the one hand, are much faster than DRAM components, but,
on the other hand, have comparatively small capacities, for both technical and
economical reasons. Most of today’s RISC—based workstations even use several
levels of caches. One to three levels are common [7].
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Efficient execution can only be achieved if the hierarchical structure of the
memory subsystem — including main memory, caches, and the CPU registers
— is respected by the code; i.e., if the code exhibits both temporal locality as
well as spatial locality®. Unfortunately, current compilers cannot introduce highly
sophisticated optimizing code transformations automatically. Much of this effort
is therefore left to the programmer [10].

The second motivation for our research is based on theoretical results con-
cerning the computational costs of numerical algorithms. Due to their asymptot-
ically linear complexity, multigrid methods are among the most efficient meth-
ods for the solution of large systems of linear equations [14]. Such problems,
for example, arise in the context of the numerical solution of partial differential
equations, using approximations based on finite differences, finite elements, or
finite volumes. Multigrid methods belong to the class of iterative algorithms;
i.e., the underlying data sets are traversed successively until some convergence
criteria are fulfilled and the iteration process terminates. From this point of view
multigrid codes exhibit a high degree of temporal locality.
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Fig. 1. DiMEPACK multigrid performance with different smoother optimizations.

However, current problems in science and engineering are based on data
sets requiring memory capacities that easily exceed today’s typical cache sizes.
Hence, our research has focused on the investigation of techniques to optimize
the cache performance of multigrid codes. Figure 1 shows speedups of factors up
to more than 3 that are achieved on a Digital PWS 500au machine by using our
2D multigrid library DiMEPACK [8]. These enhancements are based on various
data layout and data access optimizations, like array padding, loop fusion, as well

3 Temporal locality means that data which have been accessed recently will be accessed
again in the near future, spatial locality means that data which will be accessed next
are located close in memory to the data which have been accessed recently [18].



as different loop blocking approaches. Detailed descriptions and further results
for the 2D case can be found in [15,16]. We presently focus on 3D problems.

While our efforts concentrate on algorithms for structured grids (see also [2]),
other research activities address memory hierarchy optimizations for irregular
mesh structures [4,6] and a variety of other numerical algorithms; e.g., FFT [5].
Techniques for elementary stencil-based computations in 3D have recently been
presented [12,13].

This paper is structured as follows. Section 2 contains the model problem
description and derives upper performance limits based on the underlying CPU
architecture. Sections 3 and 4 describe our data layout optimization techniques
and our optimizing data access transformations, respectively. Eventually, we
draw several conclusions in Section 5.

2 Problem Description and Upper Performance Limits

In order to demonstrate the importance of data locality optimizations for 3D
multigrid methods we will start with an analysis of the runtime behavior of a
standard multigrid code. The code is based on a 7—point finite difference dis-
cretization of the differential operator. We discretize the continuous operator
on each grid level anew such that the band structure of the matrices does not
change from level to level. Our code employs a Gauss—Seidel smoother with a
red/black ordering of the unknowns, full weighting as restriction operator, and
it prolongates the corrections to the finer grids using tri-linear interpolation.
Throughout the whole paper we use the scalar elliptic equation V - (aVu) = f
with Dirichlet boundary conditions on the unit cube as our model problem.

The runtime behavior of the multigrid code on a Digital PWS 500au is
summarized in Table 1. For all grid sizes, the performance is far away from
the theoretical peak performance of 1 GFLOPS. Furthermore, the performance
for the two largest problems is significantly lower than the performance of the
multigrid code using smaller data sets. To detect why those performance drops
occur, the program was profiled using DCPI [1]. The result of the analysis is
a breakdown of CPU cycles spent for execution (Exec) and different kinds of
stalls. Possible causes of stalls are instruction cache misses (I-Cache), data cache
misses (D-Cache), translation lookaside buffer misses (TLB), branch mispredic-
tions (Branch), and register dependences (Depend).

For all grid sizes, instruction cache misses and branch mispredictions do not
represent a significant performance bottleneck. For the smaller grids, register
dependences are the limiting factor. However, with growing grid size, the memory
behavior of the code dominates its runtime. Thus, for the two largest grid sizes
with a memory consumption of about 35 MB and 290 MB, respectively, data
cache miss stalls account for more than 60 per cent of all CPU cycles. In contrast
to the 2D case, where TLB misses do not play an important role, they cause a
significant number of idle cycles in 3D.

In order to get an impression of how fast multigrid codes can be executed
on RISC-based microprocessors in general, we consider the instruction mix of a



Grid % of cycles used for
Size |[MFLOPS Exec|I-Cache|D-Cache|TLB|Branch|Depend|0ther

93 67.5 [28.8| 0.5 148 |43] 1.3 | 39.1 |11.2
172 | 55.0 |205| 1.0 376 |93 08 214 | 9.4
33| 565 [19.2] 1.2 419 |[156| 0.4 15.0 | 6.7
65| 226 |93 1.1 63.7 |18.4| 0.1 4.9 2.5

1292 20.7 9.1 1.3 60.3 [20.9| 0.1 3.7 4.6
Table 1. Runtime behavior of a standard 3D multigrid code.

Grid| % of instructions executed as
Size |Integer | Float | Load| Store | Others

9% | 40.3 [22.7|276| 3.1 | 6.3
17| 29.7 |27.6 |33.7| 3.7 | 5.3
333 | 22.1 312381 43| 4.3
652 | 17.7 |32.8/40.6| 4.7 | 4.1
129%| 15.5 [33.240.2| 6.7 | 4.4
Table 2. Instruction mix of a standard 3D multigrid execution.

standard 3D multigrid code using different grid sizes. Our results are summarized
in Table 2. For the larger grids, by far the most instructions are load as well
as floating—point (FP) instructions, followed by integer operations. Most RISC
architectures — including the Digital PWS 500au — execute data load/store
operations within their integer units, which therefore have to process both integer
and load/store operations. Thus, for a 129° grid the integer units have to process
more than 60 per cent of all instructions.

In the case of the Digital PWS 500au, the ratio of integer units to FP units
is 1 : 1. Thus, if we assume an ideal case where no stalls of any kind occur, and
where one integer and one FP instruction can be executed in each CPU cycle,
the execution of all integer, load, and store instructions will take twice as long
as the execution of all FP instructions. Consequently, this limits the achievable
FP performance to 50 per cent of the peak performance.

Although this observation is idealized, it gives an upper bound for the max-
imum performance of 3D multigrid methods. Higher performance can only be
achieved if the ratio of FP instructions to load/store instructions changes. The
following data locality optimizations are based on data dependence preserving
loop transformations and data layout optimizations that in general do not reduce
the number of load/store instructions?.

4 As a side effect, some of the optimizations might enable the compiler to reduce the
number of load/store instructions [15].



3 Data Layout Optimizations

3.1 Cache—Aware Data Structures

In our case, each linear equation is characterized by nine FP values; the value
of the corresponding unknown, the right-hand side, and the coefficients of the
T-point stencil. There is a variety of data storage schemes that can be used to
store the linear system corresponding to each grid level [3,9].

In [9] we have presented and investigated three different data layouts for
the 2D case where a 5—point stencil is involved; equation—oriented, band—wise,
and access—oriented. Each of these storage schemes can be easily extended to 3D
problems. Our experiments have shown that the relative performance differences
in 3D are comparable to the situation in 2D. We thus focus on the access—oriented
data layout and refer to [9] for further details. This storage scheme uses two
arrays; one array for the solution vector and one array of records each of which
stores the right—-hand side as well as the seven matrix entries corresponding to
a single linear equation.

3.2 Array Padding

Array padding is a technique for eliminating cache conflict misses [13]. Conflict
misses occur if the associativity of the cache [7] is not large enough to prevent
frequently used cache lines from mutually evicting each other from the cache.
The idea is to increase the array sizes by introducing elements that are never
accessed. Consequently, the relative distances in memory and thus the mapping
of the array elements to the cache locations are changed. The paddings to be
inserted depend on the cache characteristics as well as on the array dimensions.

Several approaches to determining suitable array paddings are based on an-
alytical cache models and heuristics concerning both program and cache be-
havior [12,13]. However, other researchers argue that these models do not rep-
resent the system architecture in sufficient detail and thus only yield subopti-
mal paddings. They therefore propose array paddings based on searching the
parameter space exhaustively [17]. While, in general, our research covers both
alternatives we only focus on the second approach here.

Array padding techniques for 3D arrays typically enlarge the dimensions
corresponding to the leading index and to the middle index. If the program-
ming language standard prescribes column magjor ordering (e.g., in the case of
FORTRANT7) the application of array padding looks as follows. The array dec-
laration double precision u(nl,n2,n3) is replaced by the array declaration
double precision u(ni+padl,n2+pad2,n3), where padl and pad2 are suit-
ably chosen padding constants. padl is introduced to avoid conflicts between
array elements located in the same plane, whereas the purpose of pad?2 is to
eliminate conflicts between neighboring elements in adjacent planes.

In contrast, we propose a non—standard padding approach for 3D arrays,
which is characterized by less memory overhead than the standard one. Our
technique introduces a relatively small number of inter—plane padding elements.



This number is not necessarily a multiple of the first array dimension, which
obviously is always true for the conservative padding approach presented in the
preceeding example.

Fig. 2. Non-standard padding for 3D arrays, i is the leading, k is the trailing index.

Figure 2 illustrates how two adjacent planes of a 3D array are mapped into
the address space as soon as our non—standard inter—plane padding is introduced.
The shaded areas represent the padding.

The purpose of inter—plane padding is to avoid cache conflicts between neigh-
boring elements located in adjacent planes. Hence, the use of inter—plane padding
corresponds to the introduction of the constant pad2 in the previous example.
Our experiments reveal similar performance gains for both padding approaches.

4 Data Access Optimizations

Like data layout optimizations, data access optimizations also increase the lo-
cality behavior of the code. The core idea is that, by reducing the number of
data accesses between two subsequent references to the same memory location,
the data is more likely to still reside in cache or even in a CPU register.

We have shown in [15] that in 2D the most time—consuming part of a multi-
grid code is the smoother. This is also true in 3D. Profiling experiments confirm
that, in the case of a V(2,2) multigrid cycle and for all problem sizes under
consideration, the relaxation consumes more than 75% of the total execution
time. The following optimizations thus address the implementation of the red—
black Gauss—Seidel algorithm. It is important to point out that our techniques
optimize the order of data accesses, while the numbering of the unknowns re-
mains unchanged. Consequently, the convergence behavior of the method does
not change and our optimized codes yield identical numerical results.



Since our Gauss—Seidel smoother is based on a red/black ordering of the
unknowns and implements a 7—point stencil, the red nodes can be relaxed in
any order. This is also true for the black nodes. This means that, in particular,
the order of each loop nest can be changed without influencing the numerical
results. For our standard implementation we use the most cache—aware loop
order; the innermost loop accesses the array of the unknowns with unit stride.
The performance of our standard code is relatively good for small problems, but
decreases enormously as soon as the problem size exceeds the cache capacity.
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Fig. 3. a) Fused loops: the red point in plane ¢ and afterwards the black point below
in plane ¢ — 1 are relaxed together. b) Blocked iterations: two blocked iterations are
illustrated, red and black points in different planes are updated in one step.

Analogously to the 2D case, our first optimization is to avoid the two traver-
sals of the data set — one for the red nodes and a second one for the black nodes
— by fusing the two loops into a single one. This can be done by relaxing a red
point and immediately afterwards the black point below, see Figure 3a. If the
cache can hold four complete planes of the data, all subsequent accesses can now
be satisfied from it. Care has to be taken at the upper and lower boundaries.

The idea of reducing the number of traversals of the data set can be extended
by blocking the iteration loop, see Figure 3b. A red point and its black neigh-
boring point are relaxed in planes i and ¢ — 1, respectively. After that, the red
point below in plane i — 2 can be relaxed for the second time, likewise the black
point in plane ¢ — 3. If two iterations are blocked the relaxation will then con-
tinue with the next red point in plane i. We use the term 1—way blocking to refer
to this technique since it involves one loop (the iteration loop) to be blocked.
Note that, for N iterations in the standard red—black Gauss—Seidel version, 2N
sweeps are necessary. By blocking the iterations loop by K, only N/K sweeps



remain. In order that this technique works efficiently, the cache needs to hold
2K + 2 adjacent planes.

Apparently, this is not possible for larger problem sizes. We therefore pro-
pose to partition the individual planes into rectangular tiles and to apply the
previously explained technique in a plane—wise manner. If the tile size (T'I,T'J)
is chosen suitably, a sufficient number of tiles can be kept in cache. Since this
technique requires three loops to be blocked (the iterations loop and two loops
along array dimensions), we call this approach a 3-way blocking technique. For
the stencil described in Section 2 this would require that roughly the data for
(TI+2)(TJ+2)* (2K + 2) points fit in cache.

In Figure 4 we present the MFLOPS rates that our 3D multigrid codes achieve
on two different architectures®. Especially for the larger problems, the applica-
tion of our techniques almost doubles the performance of the multigrid codes
on both machines. For the smaller grids, however, the speedups differ. On the
A21164-based Digital PWS 500au, our fusion technique yields the best perfor-
mance due to the increasing loop overhead of the 1-way and the 3—way blocking
approaches. This effect, however, can be compensated by the enhanced hardware
features of the A21264-based Compaq XP 1000; e.g., out—of—order execution.
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Fig. 4. MFLOPS rates of the optimized multigrid codes for two different architectures;
left: A21164-based Digital PWS 500au, right: A21264-based Compaq XP 1000.

Apparently, the 3—way blocking technique does not perform much faster than
the 1-way blocking technique on both machines. A more detailed profiling anal-
ysis on the Digital PWS 500au using DCPI [1] indicates the problem. While, in

® Qur experiments were carried out on a Digital PWS 500au (A21164, 500 MHz,
Compaq Tru64 UNIX V4.0D, DIGITAL Fortran V5.1) and on a Compaq XP 1000
(A21264, 500 MHz, Compaq Tru64 UNIX V4.0E, DIGITAL Fortran V5.2). On both
platforms the compilers were configured to perform a large set of compiler optimiza-
tions.
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Fig. 5. L3 cache misses (left) and TLB misses (right) on a Digital PWS 500au for
different code versions, problem size 1293, five V(2,2) cycles.

particular, the number of L3 misses can almost be reduced by a factor of 2, the
number of TLB misses grows by a factor of approximately 3.5, thus spoiling any
positive data cache effects, see Figure 5.

5 Conclusions

We have presented techniques to enhance the cache performance of 3D multigrid
codes. Most of our techniques carry over to a variety of iterative schemes based
on regular mesh structures. Our practical experiments reveal that significant
speedups can be achieved by applying suitable data layout transformations and
data access optimizations. However, the performance gains are not as impressive
as in the 2D case, see [15] for extensive 2D performance studies. One reason for
this is the higher impact of the limited TLB capacity. Hence, it is inevitable to
consider TLB behavior when tailoring numerical codes for hierarchical memory
designs. Future work will further investigate these TLB effects and focus on
techniques to overcome them; e.g., data copying.

Our current research activities focus on the investigation of analytical ar-
ray padding approaches for variable—coefficient problems. These approaches are
extensions of the techniques presented in [12]. Furthermore, we are presently de-
veloping new patch-based multilevel algorithms which are characterized by an
inherent (i.e., algorithmic) locality behavior [11]. In short, our research efforts
aim at the combination of both algorithmic as well as cache—oriented locality
optimizations.
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