
The Design and Development of Computer
Games

Markus Gross, Robert W. Sumner, Nils Thürey

ETH Zurich, Disney Research Zurich

The design of modern computer games is as much an art as painting,
sculpting, music, or writing. Albeit relatively young and still evolving,
game design is highly complex and requires a broad spectrum of artistic
and technical skills. The following contribution reviews the process of
designing and developing modern computer games. We will acquaint the
reader with the most important fundamentals of game design, walk
through the various stages of the design process and highlight the
specifics of each stage. We will analyze and elucidate the domain-inde-
pendent principles underlying game design, such as iteration, evolution,
consistency, and others. Our findings are illustrated by three case studies
on computer games developed within the scope of the ETH Game Pro-
gramming Laboratory class.

1. Introduction

Over the past 50 years, video games evolved from simplistic 2D line
drawings into highly complex software systems with rich media content,
creative artwork, and complex game flow. Today, such video games share
a 30 billion dollar market and their socio-economic impact is significant.
Individual AAA game projects operate with budgets of tens of millions of
dollars, and their interdisciplinary game design teams comprise both
artists and engineers. Video games have also been the single most impor-
tant force to drive the hardware development of personal computing,
and contemporary game consoles, such as Sony’s Playstation 3 or Mi-
crosoft’s Xbox 360, rival the compute power of supercomputers from
days gone bye.

The first computer game, called Spacewar, was developed in 1962 at MIT
(Graetz 1981, pp. 56-67) and subsequently commercialized as an arcade
game in 1971. A further milestone in early game development was Pong,
a very simple version of tennis developed in 1972. Pong was later re-
leased for home consoles and delighted a generation of video game en-
thusiasts. The continual increase in graphical complexity was evident in
Space Invaders, a 1978 arcade game with colored spaceships displayed on
raster screens. One of the most popular video games of the early eighties

! 2

was Pacman, a game that appealed equally to both male and female de-
mographics. The early eighties also spawned the first version of Ninten-
do’s Donkey Kong, the beginning of a highly successful sequence of jump-
and-run games. In the late seventies and early eighties, the first car-
tridge-based home console systems from Atari (2600 and 5200) and Nin-
tendo (NES) came out, along with the blockbuster games Super Mario
Bros. and Zelda. A major milestone of the late eighties was Nintendo’s
Game Boy, as well as the hugely popular title Tetris. In the late eighties
and early nineties, game hardware moved to 16-Bit architectures. Dra-
matically increased compute and graphics powers provided the platform
for a series of graphically, artistically, and technically more complex
game designs. Prominent examples from this era comprise the Mario and
Zelda sequels, Sonic the Hedgehog, and others. The game titles from the
early nineties clearly evidence the increased challenge in designing com-
pelling video games with rich assets and graphics content. The mid
nineties brought another quantum leap with Sony’s Playstation and Nin-
tendo’s N64, the first consoles with 3D graphics acceleration. This time
also marks the transition from 2D visuals to full three-dimensional con-
tent. The power of three-dimensionality was harnessed by many game
genres, such as sports, adventure, action, shooting, and puzzle. Around
2000, additional game hardware was released, including the Playstation
2, Game Cube, Xbox and others. In parallel, personal computers were
empowered by sophisticated 3D graphics accelerators. The release cycles
of the latest generation game consoles, specifically Playstation 3 and
Xbox 360, evidence the dramatically increased complexity and cost of
game hardware design. Expressive 3D content, very rich media assets,
computationally expensive physics, and online functionality characterize
the broad spectrum of titles and genres available at present. The addi-
tion of online functionality alone has created its own genre of massive
multiplayer online games, such as World of Warcraft. !
The design of early video games focused mostly on technical and imple-
mentation issues, since gameplay was simple and artwork very limited.
Compute resources were the limiting factor. Since then, the design of
video games has evolved into a sophisticated art of its own, and it is be-
ing taught at art schools and universities all over the world. Game design
poses great challenges as it encompasses artistic as well as technical el-
ements, which, in a compelling design, cannot be separated from one
another.

The art of game design is relatively young and still evolving. As such, the
literature on game design is limited, but continuously growing. For in-
stance, S. Rabin’s book (Rabin 2005) provides a holistic view of the topic,
including some of the more formal and abstract concepts, such as fun
and flow. For more practical purposes, T. Fullerton et al. give a work-
shop-like recipe for the design of computer games (Fullerton 2004).

!3

 The goal of this chapter is to survey and discuss the basic principles and
core components of modern video game design, development, and im-
plementation. We will describe the process and its iterative nature, fo-
cus on the different stages of game development, and abstract generic
design principles. While the paper focuses on generic principles applica-
ble to all game genres, our experience draws upon a capstone class
taught at the Computer Science Department at ETH Zürich over a period
of 3 years (gamelab 2009). Our goals and experiences from this class are
summarized in a recent paper (Sumner 2008), and many examples pre-
sented in this chapter are taken from the class projects.

The organization of this chapter follows the main stages of game design.
After giving an overview of the process in section 2, we summarize the
most important formal and technical elements of game design in section
3. Section 4 focuses on the various aspects of fun and motivation. We
discuss conceptualization as the first major stage of game design in sec-
tion 5, and section 6 addresses preproduction and rapid prototyping. The
actual production stage is explained in section 7, while section 8 focuses
on evaluation, quality assurance and game testing. Section 9 provides
examples from our game development projects of previous years.

2. Overview and Stages of Game Design

The notion of design varies significantly among different disciplines with-
in art, science, and engineering, and the ideas inherent in architectural
design differ significantly from software design, genetic design, or fash-
ion design. At present, there is no commonly accepted definition of “de-
sign,” and neither are there commonly agreed-upon rules or axioms to
leverage a systematic approach to design.

The term Game Design, is relatively recent and emphasizes the creative
process underlying the conception and implementation of a new comput-
er game. Such creative elements comprise the definition of the game’s
gameplay, as well as the creation of game assets, the underlying story,
the artwork, the media content, and the software. By contrast, game
development is focused on implementation, execution, and quality con-
trol, and is, as such, centered on engineering.

Game design is often conceived as an iterative process (Bates 2004),
such as illustrated in figure 1. The core loop of iterative design entails
the following steps. Ideas are generated, formalized, tested, evaluated,
revised, and refined until no further improvements are possible. Then,
the design transitions to the next stage where the process is repeated.
The paradigm of iterative design thus describes the entire process from
the initial idea to the playable game. The emphasis of iterative design

! 4

lies in frequent testing and early prototyping. It is noteworthy that the
same paradigm is utilized in many other design fields as well. Most no-
tably, the creation of computer-animated feature films employs a similar
process, where artists and engineers collaborate on a major creative
software project.

!

Fig. 1. : The concept of iterative design in its most generic form.

Iterative game design allows one to gain an early and deep understanding
of the game’s gameplay and foundations, the central elements of a suc-
cessful design. Iteration, as opposed to a waterfall model of software
development, is much more cost effective and helps uncover design
flaws early on. As the iterative design spirals down from the first con-
cepts to the final game, initially vague and unstructured ideas coalesce
and solidify.

The progressive refinement of iterative game design is often broken up
into four major phases, as depicted in figure 2 (Fullerton 2004, p. 197).

1. In the concept phase, brainstorming is used to generate ideas for the
game’s gameplay and other central concepts. During brainstorming,
the team tries to come up with as many ideas as possible. Such ideas
can be structured using concept cards, whiteboards, inspiration
boards or charts. The goal is to narrow ideas down to the few most
promising ones, and to write short summaries for each. In professional
game development studios, concept art is often pinned up on the
walls to inspire designers and developers. Another important par-
adigm of the concept phase is the creation of a physical prototype
using paper, pen, and cardboard. This prototype serves for iterative
playtesting and can be evaluated, revised, played, and tested until
the designer is satisfied. Pictures and drawings symbolize main char-
acters, assets, and artwork. First, concept documents are written and

!5

concept art is created. The project management develops project
plans and budgets, and contracts with publishers are finalized. This
stage concludes with initial presentations (screenings) of the game, in
which the team pitches the core elements of the game, the game’s
structure, the formal elements (see section 3), and the project plan
in front of a peer audience. The paradigm of peer presentation is also
used in animated feature films, where peers review the progression of
the story on a regular basis during internal storyboard screenings.

2. In the pre-production phase, a first playable game prototype is devel-
oped. This software prototype should model the core gameplay, but it
need not contain extensive artwork, media, or graphics. Frequently,
software tools are employed for rapid prototyping. Again, the game-
play is tested, evaluated, revised and refined using the paradigm of
iterative design. As an option, external game testers can be included.
This process also helps to determine the required technology game
assets. The design document constitutes a refined and extended ver-
sion of the concept document and outlines every aspect of the game.
It provides detailed descriptions of the flow, the artwork, and the
game’s formal elements. At the project management level, plans are
refined and resources must be allocated. This planning helps avoiding
a major redesign at a later, and hence, more expensive stage.

3. The production phase is focused on the development of all game as-
sets, the design of levels, the development of required software
technology, and the production of alpha-code. At this stage, struc-
tured design clearly prevails over flexibility. All team members verify
the correctness of the design document. Project management chal-
lenges increase, software production must be coordinated, and the
workload is distributed among team members. Individual strengths
and weaknesses have to be considered. At the end of this phase, the
first fully-functional version of the game, the alpha version, should be
available. Iterative design is consistently applied to avoid major re-
designs at this stage.

4. In the final, quality assurance (QA) phase, the alpha code is utilized
for extensive game testing to discover flaws and glitches, and to fine-
tune the game’s difficulty level. The gameplay at this stage must be
solid and the major focus is placed on usability and playtesting. The
quality-assurance (QA) phase often involves external game testers.
More recently, some professional game development teams have de-
signed very systematic, almost scientific, approaches to game testing,
including detailed statistical evaluations and visualizations (Halo 3).

! 6

!

Fig. 2. : The 4 major phases of game design. As the design progresses, structure dom-
inates flexibility (Adapted from Fullerton 2004, p. 197).

In summary, we can identify the following domain-independent design
paradigms:

Iteration as opposed to waterfall

Peer Review and regular screenings

Rapid Prototyping at all stages

Evolution of a design document (story board)

Quality Assurance by systematic testing and evaluation

The following sections will discuss each of the phases of game design in
greater detail and exemplify the above paradigms. As preparation, we
will first acquaint the reader with some fundamental considerations
about the nature of computer games.

!7

3. Formal and Technical Elements of Computer Games

3.1.Game Type and Genre

At the most basic level, a computer game is characterized by the catego-
ry into which it falls – the game genre. Such genres include action, ad-
venture, shooters, jump-and-run, sports, racing, fighting, role-playing,
simulations, strategy, puzzle, music, dance, artificial life, and others.
These genres define the basic principles from which the player derives
and retains his or her motivation to play. Motivation can be generated
from hunting and killing, collecting items, direct competition, general
reward for success, being a hero, having metaphysical abilities or super-
powers, problem solving, learning control skills, socializing, and other
similar principles. A more careful analysis of the aforementioned princi-
ples reveals that they fundamentally relate to the following four psycho-
logical abstractions:

• The archaic notion of hunters and gatherers

• Darwin‘s principle and direct competition as the survival of the
strongest

• The desire to be superior and extraordinary

• The desire to manipulate and control other beings

3.2.Formal Elements

At the next level of refinement, a game is defined through its formal
elements. The formal game elements refer to components that form the
structure of a video game. Such components entail players, objective,
procedures, rules, resources, conflicts, boundaries, outcome, goals, and
others. We will discuss a few of the most significant components here.

One of the most important formal game elements is the number of play-
ers, their roles, and their interaction patterns. Player interactions can be
single player versus game, multiplayer competition, multiplayer coopera-
tive, team competition, etc. Some important player interaction patterns
are illustrated in figure 3.

! 8

!

Fig. 3. Illustration of game player interaction patterns (adapted from Fullerton 2004,
p. 46).

Of similar importance is the game’s objective. The objective defines
what the player is trying to accomplish. It is hence central for retaining
the player’s motivation and can include capturing, chasing, racing, rescu-
ing, exploring, searching, and others. The objective is bounded by the
rules of the game; it must be challenging, but achievable. Many modern
designs utilize artificial intelligence (AI) to adjust difficulty levels to en-
sure the player always has an achievable goal. The objective further sets
the tone of the game.

The game procedures define the methods of play and actions to achieve
the objective. Such procedures involve actions and states, such as start-
ing an action, progressing an action, or resolving an action. Procedures
also have to consider system limitations, such as resolution or latency.

The game rules constitute the allowable player actions. Rules can define
concepts (chess or poker), restrict actions (soccer), or determine actions
(puzzles). The two major design paradigms for the game’s rule base are:

Consistency and Logical Correctness

The resources, often called game assets, are used to achieve goals and
objectives, but also cater to the above mentioned principles of collect-

!9

ing and gathering. The subconscious aspect of such assets requires care-
ful consideration during design as it significantly influences the player’s
motivation. Examples include lives, units, money, health, objects, ter-
rain, and time.

Most similar to creative writing, the notion of conflict plays a central
role in the conception of a computer game. Such conflict arises when a
player is trying to achieve the goals within the game’s constraints and
boundaries. Conflict is essential to create a challenging game and to up-
hold motivation. Examples include obstacles, opponents, or dilemmas.

Finally, there is the game’s outcome. Outcome describes the measurable
achievement in the game. In most games, the outcome relates to a
“winning” situation, however, some games have different outcomes. An
interesting class of exceptions is massive mulitplayer online games
(MMOGs), such as World of Warcraft, where the concept of a single out-
come is dissolved and replaced by different kinds of rewards, partly re-
lated to the player’s social status within the online community. Such
games have no clearly defined outcome, continue forever, and thus have
high potential for addictive behavior.	

3.3.Technical Elements

In addition to formal game elements, there is a variety of technical ele-
ments that define a computer game. Modern professional games address
a wide spectrum of problems related to information technology and
computer science, and the employed technology has a significant impact
on the production cost. As a design principle, we postulate:

TFF: Technology follows function (gameplay)

A detailed discussion of all relevant technical elements for video games
is beyond the scope of this paper, and we limit our considerations to a
summary of the most relevant ones. We refer the interested reader to
technical textbooks on game development, such as (Irish 2005, Rabin
2005, Novak 2007).

First and foremost, there is software engineering. Modern games demand
a variety of sophisticated methods and algorithms, making the typical
code base of professional game projects rather complex. The code com-
plexity and the involved cost create the need for maximum reusability
between different game projects. Such requirements are best addressed
by advanced software engineering methods with proper class design, hi-
erarchy, and the definition of interfaces. To the extent possible, stan-
dardized APIs and libraries are utilized. Microsoft’s XNA (Miles 2008) is a
good example of a low-level game API. Higher-level APIs are available for

! 10

physics, such as Nvidia’s PhysX (Nvidia PhysX). The design principle un-
derlying game software can be summarized as:

Simplicity: As simple as possible, as complex as required

A second important technical game element relates to 3D graphics. Mod-
ern 3D graphics requires complex geometry and appearance specifica-
tion, including the scene structure (scene graph) and organization, im-
port and export of 3D models, their positioning and transformation, ad-
vanced pixel shading and lighting, texture mapping specifics, animation,
anitaliasing, and video replay.

The way the player interfaces with the game comprises another impor-
tant factor. User interaction must be properly specified early on. Among
the variety of controllers, we can chose between conventional ones, such
as mouse, joystick, buttons, dials, keyboard, cameras, and microphone,
or design customized controllers to leverage gameplay. Harmonix’s Gui-
tar Hero evidences the great benefit of a proprietary controller design.
Special attention must be devoted to the control of viewing and cameras
as well as the associated degrees of freedom. In general, camera control
in computer games is a highly non-trivial problem and the subject of on-
going research (Oskam 2009).

The game’s artwork and assets constitute the central elements that de-
termine the game’s appeal and aesthetics. As such, the creation of the
artwork can easily consume a substantial portion of the production bud-
get. 3D models comprise scenes, landscapes, characters, and objects.
The proper choice of modeling software is highly important. In addition
to 3D models, the design of texture maps makes up a relevant part of the
artwork. Texture maps are utilized for a variety of different effects, in-
cluding general texture maps, shaders, lighting effects, surface proper-
ties, and data for more general computations. Most often, the creative
use of real-world digital photos extends the repository of synthetically
generated textures.

Another salient element is sound and audio. Sound includes both general
background or theme music as well as auditory feedback during game-
play. Sound contributes substantially to the feel of the game and draws
upon the longstanding experience in cinematography of enhancing emo-
tional response using sound elements. It is crucial to clarify the required
sound elements early on, determine why they are needed, and how they
contribute to the gameplay. The theme score of Halo exemplifies the
sophistication of musical compositions as part of modern games.

Game physics is gaining increasing importance for the realistic simulation
of rigid bodies, collisions, friction, explosions, crashes, deformations,
cloth, and other effects. One of the challenges of game physics, as op-
posed to scientific computations or special effects, is realtime perfor-

!11

mance in combination with unconditional stability and robustness. As
such, most algorithms for game physics abstract from the actual physical
laws and strive instead for visual plausibility. In addition, careful design
of data structures is central for performance optimization. Since the de-
sign of these physical algorithms (Eberly 2003) is highly non-trivial, game
development teams often resort to physics libraries, such as Nvidia’s
PhysX or Intel’s Havoc.

Lastly, one of the most important technical game elements is the game’s
artificial intelligence (AI), or the game’s ability to adapt to the player
and to compute believable behavior of its characters. Game AI encom-
passes path planning, modeling of agent behavior, modeling of the play-
er, global control of the game’s state, and other processes. It is essential
to achieve adaptivity in a video game. Most commonly employed algo-
rithms include A* path planning, agent models, state machines, search
and prune, and, more recently, statistical learning (Buckland 2008).

4. Understanding Fun

When asked why someone plays a video game, “fun” will be at the top of
the list of reasons. Games are fun. That's why we play them. Thus, the
concept of “fun” is crucial in game design, and understanding “fun” is
critical in developing a successful game. While “fun” may seem like a
nebulous concept, the theory of “Natural Funativity” (Falstein 2004)
connects this concept to our evolutionary roots.

Natural Funativity suggests that games and other playful pastimes are
thought to be fun and enjoyable not by chance but by the virtue of evo-
lution. Nearly all games (video and otherwise) involve some form of chal-
lenge, such as running fast, throwing a ball or spear, or solving a puzzle.
The reason most people describe these activities as fun is because, in
our deep ancestral origins, those who happened, by the randomness of
genetics, to enjoy such activities in their playtime were better prepared
to handle life threatening situations that borrowed similar skills. Those
who enjoyed running with their friends were more likely to outrun the
tiger; those who enjoyed throwing balls as a pastime were able to sur-
vive as hunters; those who enjoyed solving puzzles were more likely to
outsmart their enemies. Thus, the things we consider fun are not acci-
dental, but rather were specifically favored in evolution as the pastimes
that increased chances of survival. The theory extends beyond physical
and mental challenges to social aspects of the human experience. Our
desire to form groups, interact with colleagues, chat with friends, tell
stories, and flirt with others are rooted in our tribal hunter-and-gatherer
ancestors, since those who preferred human bonding over going-it-alone
were more likely to survive.

! 12

With the theory of Natural Funativity in hand, the concept of “fun” in
games is much less elusive. First-person shooters speak to our origins as
hunters. Role-playing-games contain the element of exploration, which
we consider fun since, in evolution, those who enjoyed exploring were
more likely to find better shelter, better food, and other items necessary
for survival. Games like Tetris and many other puzzle games help us hone
our logic, perception, problem solving, and pattern recognition skills---
all important in the history of our survival. On the social side, the cine-
matic nature of games appeals to our roots in storytelling. Games that
focus on interacting with friends and flirting speak to our tribal roots in
their purest form. Finally, it comes as no surprise that many of the most
successful games combine several aspects of fun---physical, mental, and
social---to resonate more strongly with our hard-wired concept of fun.

5. Conceptualization

Although the technical sophistication of modern video games is enor-
mous, with hundreds of thousands of lines of source code comprising
countless algorithms and mathematical computations, game design---
which ultimately makes the player experience so rewarding---is as much
an art as painting, writing, sculpting, or storytelling. In fact, game de-
sign draws heavily from all of these artistic endeavors, as well as many
more.

As is the case with any highly creative process, there is no formula,
recipe, or other step-by-step procedure to replicate the creativity neces-
sary for game design. With no surefire approach, many people, especially
beginners, find the prospect of designing a game from scratch extremely
intimidating. Conceptualization, or, in short, the initial creative spark
that leads to the core game idea, causes particular angst.

While creativity itself resists formal explication, the creative process can
be formalized to help harness the natural creativity present in every-
body. Here, we describe formalizations employed by both seasoned game
designers and neophytes alike to aid in the conceptualization process
when the core game idea is developed.

Write it down!

Although the first rule may sound mundane, it is extremely important:
write things down! Ideas come all of the time---day, night, walking, run-
ning, driving, showering, eating, listening to music, etc. You may even
wake up in the morning with an idea in your head from the dream you
were having. If you do not write it down immediately, this ephemeral
thought may disappear. Thus, the first formalization to assist in game

!13

design is training yourself to write down each and every idea that you
have.

Brainstorming

Brainstorming is a formal way to stimulate creativity and the free flow of
ideas. There are a multitude of brainstorming techniques ranging from
list creation, in which you list everything you can think of about a par-
ticular topic, to randomization, in which you select words at random
from the dictionary or from a stack of pre-arranged cards and consider
making a game related to the words, to research, in which you learn as
much as possible about a particular topic, to mind mapping, where you
expand ideas in a radial fashion to represent semantic connections be-
tween topics (Fullerton 2004). The goal and focus of brainstorming is al-
ways to generate lots of ideas. When working in a team, it is important
to maintain a positive attitude and avoid criticism so that ideas flow un-
filtered. Although brainstorming offers no guarantee (Gabler 2005), it has
the side effect that new ideas may continue to come when unexpected.
Have pencil and paper ready, and write them down!

Organization and Refinement

When a few brainstorming sessions are added to the normal flow of
ideas, you may find that your list becomes unwieldy. At this stage, search
for a way to organize and categorize your ideas. As you do so, look for
patterns or structure that might hint at a profitable game direction.
When going over your idea pool, select the most promising ones and ex-
pand upon them with a new, more directed brainstorming session. Re-
stricting the potential landscape of ideas can often stimulate creativity
and lead to clever or new approaches to a topic. As this process is iterat-
ed, continue to highlight and expand the best ideas while considering
how they could map to the formal and technical elements of game de-
sign described in Section 3.

6. Prototyping

A game prototype represents the first working version of the formal sys-
tem describing the game. At the prototyping stage, only a rough approx-
imation of the artwork, sound, and features of the game need to be con-
sidered. This allows a designer to focus on the fundamental game me-
chanics, instead of worrying about production-related issues. The goals
of prototyping are twofold: define the gameplay in its purest form, and
learn whether the core mechanics hold the player’s interest. In addition,
a prototype can help to balance the rules and discover emergent behav-
ior. The complex interactions of gameplay elements typically make it

! 14

difficult to uncover play patterns without a concrete realization in the
form of a prototype.

As a first step, the core gameplay can be summarized by describing the
game’s core concept in one or two concise sentences that define the sin-
gle action a player repeats most often while striving to achieve the
game’s goal. Over time, the meaning and consequences in the game
might change, but the core gameplay will remain the same (Fullerton
2004).

���
Fig. 5: A paper prototype for a strategy game is shown on the left. Each unit is repre-
sented by a piece of cardboard. The two images to the right depict the game’s units
in the final software version.

A prototype can be realized in a variety of ways. One popular option is to
create a physical prototype using paper, cardboard, and a set of counters
since this works very well for testing game mechanics, rules, and proce-
dures. Figure 5 shows an example, where a team from the game design
class at ETH outlines how they balance the units of their strategy game
using a paper version. However, it can be difficult to test action-oriented
games in this fashion. A second prototyping option is to create a video-
based animatic or a storyboard. Such a visual prototype can capture the
user experience and communicate the game’s ideas to others. One draw-
back of this form of prototyping is that videos can be difficult to pro-
duce. A third option is a software prototype. Tools for rapid software de-
velopment, such as Flash/Shockwave, Visual Basic, or level editors of
existing games, are well suited for this task. Figure 6 shows a game pro-
totype created within only a few days using the Director software. It
served as the basis for the creation of the game Battle Balls, and already
contained the game’s core mechanics that were later included in the
console version.

Once the core game-play has been explored and refined on the proto-
type, the design process can focus on other areas of the game, such as
extending the basic feature set, the game’s controls, or its interface. At
later stages of the development process, prototypes for specific ele-
ments of the game are created, again focusing on the underlying me-

!15

chanics of the new element. Such prototypes can be used to demonstrate
novel control schemes or new visual effects.

��� ���
Fig. 6: On the left, an early software prototype of the game Battle Balls is shown. It
is already fully playable, and contains all major game-play elements of the final ver-
sion, shown on the right hand side.

7. Playtesting

Testing a game is itself a continuous, iterative process that overlaps all
stages of game design. The goal of playtesting is to gain insights into how
players experience the game, identify strengths and weaknesses of the
design, and learn how to make the game more complete, balanced, and
fun to play. Moreover, the results of a playtesting session can provide the
necessary evidence to abandon unsuccessful parts of a game design.
Since making significant changes to a game’s design is more difficult at
the later stages of the production cycle, it is important to start testing
very early on in the design process.

Although a designer constantly tests his or her design as a game is creat-
ed, the emotional attachment to one’s own ideas makes it is crucial to
have external testers review the game. Friends and family are good can-
didates to give feedback during early stages of the development. In later
stages, unrelated testers can give more objective feedback and offer a
fresh, unbiased viewpoint. Usually, after a selection process, the testers
are invited to a testing session individually or in groups. During these
sessions, it is vital to neutrally observe the testers. An explanation of the
rules or the grand vision of the game might bias a tester’s opinion and
prevent him or her from giving useful feedback.

During the testing sessions, it is important to gather as much information
as possible. The testers can be observed while they are playing the
game, which might give insights about where players typically get stuck,
where they become frustrated, or which obstacles and enemies are too

! 16

easy to overcome. After a testing session, a tester can be asked to an-
swer questions about formal aspects of the game. Typical questions are
whether the objective of the game was clear at all times, whether a
winning strategy became apparent, and whether the tester found any
loopholes in the rules. Finally, each testing session is followed by an
analysis stage to determine which conclusions should be drawn from the
feedback of the testers, and which parts of the game design might have
to be changed as a consequence.

A very elaborate form of playtesting is performed by Bungie Studios, cre-
ators of the Halo franchise on the Xbox (halo3 2009). In Bungies’s own
research facility, testers are invited to play a current version of the
game. While they are playing, a database captures all aspects of their
performance: locations of deaths, weapons, vehicles, extras, the player’s
progress over time, as well as a full video of the playing session. For Halo
3, more than 3000 hours of game-play from about 600 testers were ana-
lyzed. This analysis made it possible to fully balance the multi-player
game, and minimize the frustration during the single-player campaign.
With this large amount of gathered data, state of the art data mining
techniques can be used to extract information. One possibility is to cre-
ate “heat-maps” that visualize which areas are occupied most often in
multi-player matches, or adding color-coded time stamps to the map of a
level. The latter can be used to quickly identify regions where a player
performs an undesired amount of backtracking, and, thus, lost focus on
the game’s objective.

8. Case Studies

To illustrate the design principles outlined in the previous sections, we
present and discuss three game projects, selected from the game design
class at ETH Zurich, that exhibit different design goals and challenges.
Titor’s Equilibrium is a two-player game based on the physical interac-
tions of objects in an abstract futuristic setting, Sea-Blast focuses on
multiplayer submarine battles, and Toon Dimension features cooperative
game play in a stylized comic world. Videos of all games developed dur-
ing the class are available on the course website (gamelab 2009).

Titor’s Equilibrium was developed by three students of the game class in
2007 and takes place in an abstract futuristic setting inspired by films
such as Tron. The game is designed for two simultaneous players, where
each player controls a fragile ghost that can survive only for a limited
amount of time in mid-air. To survive for a longer time, and attack the
opponent, each player can enter geometric objects that are spread
throughout the game’s levels. Depending on the type of object, the play-
er has different abilities of attack and defense. Winning is achieved by
destroying the other player’s object and preventing him or her from en-

!17

tering another one. The different attack styles are balanced in a rock-
paper-scissors fashion.

!

Fig. 7: Concept art and several screenshots at different development states of the
game project “Titor’s Equilibrium.” The painting on the left is an early sketch showing
the game elements and prescribing the game’s visual style. The two middle images
show technology tests for rendering the game objects and smoke trails. The right
image shows the first playable version with preliminary graphics.

The visual design of the game contains abstract geometric forms, and
sets the different game elements apart by form and color, as shown in
figure 7. This abstract style was deliberately chosen in response to the
limited amount of time available for development during the class. Com-
plex shading techniques give the game elements an interesting look. The
computation of accurate physical interactions between the objects pre-
sented an additional difficulty during the realization of this game. The
students chose to implement this part of the game engine themselves,
which comprised a large portion of the overall development process. An
example of a player interacting with the environment is shown in figure
8.

!

Fig. 8: A typical scene from the final game: the green player attacks the orange one
in the foreground by dashing forward through several stacked boxes.

Sea-Blast was realized during the game class of 2008 (see figure 9). The
game can be played by up to four players, either fighting against each
other or against computer controlled enemies. The setting of the game is
an underwater battle between submarines. The game’s basic concept is
very simple: players control a small vehicle in the level, and can shoot at
their opponents with different types of weapons. This simple initial de-
sign permitted careful extension of the game’s foundation with balanced
game-play elements. For example, vehicles with different characteristics
can be selected at the start of each playing session, allowing for differ-
ent winning strategies. To set their game apart from similar games, the
students chose to implement a physical simulation to calculate the mo-

! 18

tion of the water filling each level. This results in complex interactions
between the water flow and the players and weapons. The physical simu-
lation is a strategic element that can be used to distract or damage the
opponents, for example by creating a local vortex that draws objects to
its center.

The Sea-Blast game highlights the importance of an overall balanced
game design. While the underlying concept makes sure the game is intu-
itive and fun to play, the technological aspects, such as the fluid simula-
tion, set it apart from other games. Great artwork and sound effects
round off the game’s experience. The importance of all of these ele-
ments also means that a team working on such a game should consist of
talented people that are able to produce all elements of the game with
the desired quality. In this case, the Sea-Blast team achieved a very pol-
ished final version, and the game is publicly available for purchase via
the Xbox online marketplace.

!

Fig. 9: Three screen shots from the Sea-Blast game: from left to right, the title
screen, a scene from a four player battle, and two players fighting against computer-
controlled enemies.

As the name suggests, cartoons inspire Toon-Dimension’s (2009) setting
and visuals. An evil scientist has split the world’s dimensions, and two
players in different dimensions must cooperate to win the game. While
most of the environment can be seen and modified by all players, certain
game-play elements belong only to a single player’s dimension, and can
be modified exclusively by this player. This setting allows for interesting
puzzles in which the players must collaborate to combine pieces from
different dimensions.

The game’s graphics and animations follow a comic style. Cel-shaded
three-dimensional models give the game a painted look, and cartoons
inspire the exaggerated motions of players and enemies. In figure 10,
several screen-shots of the game illustrate its unique visual style. In con-
trast to the previous two games, Toon-Dimension’s game-play is primarily
based on the cooperation of the players. As a result, a great deal of ef-
fort was required to design the multiplayer puzzles. The team focused on
creating a limited number of high-quality levels.

!19

As evident from these three games, multiplayer gamplay is a popular
choice in our game classes. In a multi-player game, the actions of other
players comprise a significant portion of the game’s mechanics, which
simplifies development and makes such a design well suited for small
teams with a limited time budget.

!

!

Fig.10: The game Toon-Dimension features comic-style visuals and a complex cooper-
ative gameplay.

9. Conclusion

Perhaps more than any other discipline, game design is both an art and a
science, a technical endeavor and a form of artistic expression. The most
cutting-edge games stress the technical sophistication of modern console
hardware and incorporate advanced algorithms for graphics, physics, in-
teraction, artificial intelligence, and data structures while, at the same
time, present never-before-seen visual styles, explore new forms of story
telling, and invent new ways for humans to interact with computer and
with their friends, families, and colleagues. The technology drives the
design by providing ever increasing computational power and the ability
to express more sophisticated visual styles. The design, in turn, drives
the technology by pushing the limits of modern day hardware and soft-
ware in ways that scientists could never conceive.

In this chapter, we have described the game design process and how it
draws upon both technical and artistic elements. The earliest games -
Spacewar, Pong, Space Invaders - seem exceedingly simple from today’s
standards. Indeed, both the technological and artistic sophistication of
video games has increased with an unabated speed since the first game
was made. The iterative process of modern game design stresses an early
understanding of a game’s core mechanics and visual style so that design
elements can be refined and tuned. Ideas are generated, prototypes
built, game assets created, and gameplay tested in a spiral loop that ze-
ros in on a highly polished final product. Formal elements such as play-
ers, procedures, rules, objectives, resources, conflicts, and outcome are

! 20

developed alongside the visual style, user-interface, and thematic score.
Brainstorming and other formalizations of conceptualization can greatly
help with this design process. Prototypes are used to test the design and
validate that it lives up to our inherent standards of fun. Playtesting
completes the iterative process with a formal method to obtain feedback
and improve upon a game’s design. The final output is a collection of
artwork, a collection of 3D models and animated characters, of algo-
rithms, of procedures, of stories and music and sounds - all unified and
coordinated by a single game design to deliver a wondrous experience
that can only be found in the world of gaming.

10. Acknowledgements

The authors would like to thank all students and development teams par-
ticipating in the ETH Game Programming Laboratory classes of 2007,
2008, and 2009. For Titor’s Equilibrium: Marino Alge, Gioacchino Noris,
Alessandro Rigazzi ; for Sea Blast: Urs Dönni, Martin Seiler, Julian
Tschannen; for Toon-Dimension: Peter Bucher, Christian Schulz, Nico
Ranieri.

References

Bates B. (2004): “Game Design“, Course Technology PTR; 2 edition, ISBN-10:
1592004938

Buckland M. (2004):” Programming Game AI by Example”, Wordware Publishing, ISBN:
978-1556220784

Eberly D. H. (2003): “Game Physics”, Morgan Kaufmann
Falstein N. (2004): “Natural Funativity”, Gamasutra, http://www.gamasutra.com/

features/20041110/falstein_01.shtml (retrieved July 2009)
Fullerton T., Swain C., and S. Hoffman S. (2004): “Game Design Workshop: Designing,

Prototyping, and Playtesting Games”, CMP Books
Gabler K., Gray K., Kucic M., Shodhan S. (2005): “How to Prototype a Game in Under

7 Days:
Tips and Tricks from 4 Grad Students Who Made Over 50 Games in 1 Semester”, Gama-

sutra,
http://www.gamasutra.com/features/20051026/gabler_01.shtml (retrieved July

2009)
gamelab (2009), Game Programming Laboratory, http://graphics.ethz.ch/teaching/

gamelab09/home.php (retrieved July 2009)
Graetz J.M. (1981): “The Origin of Spacewar”, in Creative Computing, http://

www.wheels.org/spacewar/creative/SpacewarOrigin.html (retrieved July 2009)
Halo 3 (2009): “How Microsoft Labs Invented a New Science of Play”,http://

www.wired.com/gaming/virtualworlds/magazine/15-09/ff_halo, WIRED Magazine,
Issue 15.09 (retrieved July 2009)

!21

Irish D. (2005): “The Game Producer's Handbook”, Course Technology PTR; 1 edition,
ISBN-10: 1592006175

Miles R. (2008): “Microsoft® XNA™ Game Studio 2.0: Learn Programming Now!”, Mi-
crosoft Press, ISBN-10: 0735625220

Novak J. (2007):” Game Development Essentials: An Introduction”, Delmar Cengage

Learning; 2 edition, ISBN-10: 1418042080
NVIDIA PhysX, http://www.nvidia.com/object/physx_new.html (retrieved July 2009)
Oskam Th., Sumner R. W., Thuerey N., Gross M. (2009): “Visibility Transition Planning

for Dynamic Camera Control”, Proceedings of the SIGGRAPH/Eurographics Sympo-
sium on Computer Animation

Rabin S. (Ed.) (2005): “Introduction to Game Development”, Charles River Media,
ISBN-10: 1584503777

Sumner R. W., Thuerey N., Gross M. (2008): “The ETH Game Programming Laboratory:
A Capstone for Computer Science and Visual Computing”, Game Development in
Computer Science Education (GDCSE); ACM

