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Summary:

Computationally intensive programs with moderate communication requirements such as
CFD codes suffer from the standard slow interconnects of commodity “off the shelf” (COTS)

hardware.

We will introduce different large-scale applications of the Lattice Boltzmann

Method (LBM) in fluid dynamics, material science, and chemical engineering and present
results of the parallel performance on different architectures. It will be shown that a high
speed communication network in combination with an efficient CPU is mandatory in order
to achieve the required performance. An estimation of the necessary CPU count to meet the
performance of 1 TFlop/s will be given as well as a prediction as to which architecture is the
most suitable for LBM. Finally, ratios of costs to application performance for tailored HPC
systems and COTS architectures will be presented.

1 Introduction

The Lattice Boltzmann Method (LBM) is a new
computational alternative for simulating fluid flows
and is rapidly gaining attention. It is an attractive
method since it is based on a simple core algorithm
which in turn makes it easy to adapt to complex
application scenarios. Moreover, the base algorithm
of the LBM can easily be extended to capture addi-
tional physical effects. Consequently, this method is
being used as a universal tool in a rapidly increasing
number of research projects. However, the flexibility
of the LBM comes at a high price in terms of com-
putational cost. which routinely requires the use of
parallel supercomputers.

In this paper we will report on three challenging
projects using the LBM on supercomputers. The
first application is being used in nanotechnology to
investigate the flow around agglomerates of parti-
cles. The second code simulates highly turbulent
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flows. The last application which is based on the
nanotechnology code is currently being ported to
supercomputers. It originates from material science
where it helps to understand the flow of liquid metal
during the production of metal foams.

These simulation projects are all based on the
LBM and have originally been developed for three
different target architectures. We will present and
compare results of parallel simulation runs on

e Hitachi SR8000-F1,
e SGI Altix, and
e NEC SX6.

While this paper focuses on the parallel imple-
mentation of the LBM, we emphasize that all our
applications are based on highly optimized compu-
tational kernels. The single processor tuning tech-
niques are described and evaluated for a set of
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Figure 1: D3Q19 model. Velocities are labeled accord-
ing to compass notation while T refers to “top” and B
to “bottom”

high performance architectures in [1]. For different
COTS architectures similar methods and results are
presented in [2] for 2D and in [3] for 3D LBM codes.

The major goal of parallelizing and tuning the
codes, is clearly the reduction of simulation time.
Besides presenting speed-up and scale-up! results,
we will also try to predict which architecture is most
effective for LBM-based simulations. A priori, it
is not evident, whether a cluster of PCs with an
inexpensive network most likely running only at a
fraction of its peak performance is more efficient
for executing LBM codes than a highly optimized
supercomputer architecture like the NEC SX6, as
a representative of a classical vector architecture,
or the Hitachi SR8000, a system built on enhanced
PowerPC chips that features a dedicated high per-
formance network and a virtual vector node archi-
tecture [4].

Of course, these architectures are expensive, but
they can possibly achieve a much higher fraction of
their peak performance. We will present (extrapo-
lated) results on how many of these nodes would be
necessary to achieve a sustained TFlop/s of perfor-
mance for the considered codes and give ratios of
costs to performance for a variety of architectures.

2 The Lattice Boltzmann Method

The LBM is an extension of the lattice gas algo-
rithms and approximates the Navier-Stokes equa-
tions with a cellular automaton. In contrast to
conventional methods in fluid dynamics which are

Iscale-up: problem size per CPU is constant (weak scaling),
speed-up: problem size is fixed (strong scaling)
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Figure 2: Fused stream/collide (top) and col-
lide/stream step (bottom) for the center cell. After
reading (green arrows) the required DF's from the source
grid, new values are calculated in the collide step, which
are stored in the destination grid (blue arrows). The
only difference between the stream/collide and the col-
lide/stream version are the memory access patterns

based on the discretization of macroscopic differen-
tial equations, the LBM follows a bottom-up ap-
proach by simulating the evolution of particle dis-
tribution functions (DF). A major advantage of the
LBM is its ability to deal efficiently with complex
geometries and topologies. Furthermore, it can be
implemented easily and efficiently on parallel archi-
tectures.

The LBM operates on a lattice that consists of
cubic cells of equal size, each of which stores par-
ticle distribution functions along a discrete number
of velocity vectors. In 2D, models with 9 velocities
(D2Q9) are in common use. Fig. 1 shows a dis-
cretization in 3D with 19 velocities [5] which is used
in all introduced applications.

Each DF is stored as a floating point value and
represents the number of particles in the current cell
moving in the that direction. Density and velocity
of the fluid in a cell can be calculated from these
values by simple summations.

The LBM proceeds in two steps, the stream step
and the collide step (also called propagation and re-
laxation). During the stream step, the particles are
moved along their respective velocities, as shown in
the lower half of Fig. 2. Normalizing the time step to



Figure 3: Two simulation setups for an agglomerate of 32 (left) and 256 particles (right). As can be seen from
the movement of the tracers, the shear flow moves in opposing directions at the top and the bottom of the domain

one, the distance covered is exactly the distance to
an adjacent cell. Thus all DF's are copied to the cor-
responding neighboring cells. The collide step sub-
sequently computes the effect of the collisions which
occur during the movement in the stream step. A
new set of DFs is obtained from a weighted aver-
age of the streamed DFs with the equilibrium DFs;
the latter are calculated from the fluid velocity and
density in the cell. The global weighting factor is
determined by the viscosity of the fluid [6].

Obstacles are handled by reflecting the particle
DFs at the obstacle boundary, resulting in a nor-
mal and tangential velocity of zero (bounce back
scheme).

3 Lattice Boltzmann Applications

The next section will illustrate with three examples
the wide range of applicability of the LBM.

3.1 Nanotechnology

The detailed modeling and simulation of the be-
havior of rigid particles immersed in fluid flow has
numerous important applications in chemical engi-
neering. In the case considered here, particles are
assumed to be of the size of 10s to 1000s of nanome-
ters. They are modeled individually, while the flow
is simulated by the LBM. Many interesting ques-
tions can be studied with such a simulation, e.g.,
the clustering of particles to agglomerates or the
breakup of particle agglomerates. This project is
still in the starting phase. However, the LBM is
especially attractive for handling the dynamically
changing flow domain due to particle movement.

Two examples of agglomerates provided by the
LFG Institute Erlangen are shown in Fig. 3. The
first represents a sintered agglomerate and consists
of 32 particles while the second one is built of 256
particles before sintering. Each particle in an indi-
vidual agglomerate is represented by a sphere. To
compute the forces acting upon these agglomerates
in a fluid, we expose them to a shear strain by ini-
tializing the flow as having two opposed velocities
at the top and the bottom of the computational do-
main. The agglomerate structure which is placed
near the center of the flow is represented by obsta-
cle cells. Each particle is again approximated as a
sphere, while in the simulation cubic obstacles are
used to approximate the spherical shape. The forces
acting on an agglomerate can be computed by inte-
grating the pressure obtained from the LBM simula-
tion over the surface area of the whole agglomerate
[7].

3.2 Turbulence

The description of turbulence is a fundamental prob-
lem in flow engineering and theoretical research in
fluid mechanics. Turbulent flows consist of large
eddies as well as dissipating small structures and
therefore cover a wide range of scales and energies.
Sufficiently resolving all scales in a direct numerical
simulation (DNS) is still a great challenge. Conse-
quently, not all types of flows can be computed yet,
nor is there any hope that they will be computable
in the near future. However, turbulence research
requires detailed information attained by numeri-
cal simulations and thus benefits from the develop-
ment of new algorithms and the evolution of high
performance computers. Therefore it remains an



Figure 4: Large-eddy simulation of the flow through
an exhaust system at Re = 3 - 10°. The computational
grid is gained from CAD data by the marker-and-cell
approach

open problem to develop a numerical method which
presents the best compromise between the conflict-
ing requirements of low computational cost and high
numerical accuracy. Against this background the
LBM has been studied as a candidate for turbulent
flow computation at the Institute of Fluid Mechan-
ics (LSTM) in Erlangen.

To illustrate the ability of the LBM to simu-
late turbulence, this section presents two examples.
The first one is a technical application of the flow
through an exhaust system. The aim here is the
calculation of the pressure drop over the catalyst.

In Fig. 4 three exhaust manifolds are shown. Only
one of them is charged with fluid. The Reynolds
number which determines the ratio between con-
vective and molecular transport is about 3 - 10°.
The higher the Reynolds number, the larger the
range of scales that have to be resolved needs to be.
Consequently, a large-eddy simulation (LES) is per-
formed in this application. In a LES the large-scale
structures are given by the Navier-Stokes equations
whereas the influence of the scales smaller than the
grid size is modeled by modifying the viscosity of the
fluid in a more or less appropriate way. We use the
popular Smagorinsky subgrid-scale model in which
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Figure 5: Comparison of LBM and pseudo-spectral re-
sults for a plane channel flow at Re; = 180: RMS values
of the three velocity components

the modified viscosity depends on the shear stress
tensor. The main advantage of the LBM framework
is that this tensor can be computed locally at ev-
ery grid node from the DFs without the need for
numerical differentiations [8].

The geometry of the exhaust system can be easily
described by the marker-and-cell approach. A voxel
model is created from CAD data of the geometry
and used together with the bounce back boundary
condition. Details of this investigation can be found
in [9].

The second example is an application of theoreti-
cal background: the DNS of wall-bounded turbulent
flows. Direct numerical simulations have become the
fundamental means for answering open questions in
turbulence research because, in principle all required
quantities can be extracted from the complete time
dependent three-dimensional velocity and pressure
fields. An example of DNS with LBM of a wall-
bounded turbulent flow at low Reynolds number
can be found in [10]. Here we present a comparison
of the LBM and a pseudo-spectral simulation for a
fully developed turbulent flow between two parallel
plates with periodic boundary conditions in stream-
wise and spanwise direction. The geometry and the
flow parameters have been chosen according to the
case of Kim et al. [11]. In the reference code the
equations are solved by Fourier transformation in
streamwise and spanwise direction and by a Cheby-
shev series in wall-normal direction. The Reynolds
number based on the channel width and the bulk
viscosity is 5600 (which is equivalent to a Reynolds
number of 180 based on the channel half-width and
the wall shear velocity).

As seen in Fig. 5 the agreement with the refer-
ence data base [12] is very good. More information
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Figure 6: Discretization of the free surface topology for
LBM

related to this test case is available in [13] and [14].

3.3 Metal Foams

The last example comes from material science. The
goal is the development and high performance im-
plementation of a model for the simulation of the
formation process of metal foams

Metal foams are interesting as lightweight mate-
rials that have an excellent combination of mechan-
ical, thermal and acoustic properties. However, the
production process is currently not fully understood,
and highly accurate numerical simulations are re-
quired to optimize the process parameters such as
temperature and gas concentration to ensure the de-
sired foam characteristics [15].

This project has as its primary target the Hitachi
SR8000 architecture in Munich, and is a collabora-
tive effort of the System Simulation Group (LSS)
and the Institute of Science and Technology of Met-
als (WTM) at the University of Erlangen.

Within the model the liquid metal phase is treated
as a Newtonian fluid. Its motion is caused by the
foaming agent which in turn increases pressure and
volume of the gas bubbles in the foam. We have de-
veloped a free surface model that simulates only the
flow in the liquid metal phase, while the gas phase in
the bubbles is treated in a very simplified way. This
reduces the computational complexity and avoids
stability problems full two-phase models might ex-
hibit due to the large difference in viscosity of the
gas and the liquid phase. During processing, the
geometry and topology of the fluid domain changes
very rapidly which can be treated easily within a
LBM simulation. Despite the previously mentioned
simplification, the simulations require large compu-
tational grids to capture the complex foam topology
and to represent the low viscosity of the fluid phase
correctly.

The gas and fluid phase of a metal foam further-
more require a distinction between cells that do not

contain any fluid (gas cells), interface cells which are
partially filled, and cells completely filled with fluid.
An exemplary configuration is shown in Fig. 6. The
fluid cells can be treated as described above, while
no computation is necessary for gas cells. Only in-
terface cells need to keep track of the amount of fluid
that they currently contain. This can be done by
computing the mass exchange with all neighboring
fluid and interface cells, i.e., subtracting the outgo-
ing DF's from the incoming ones during the stream
step.

As gas cells are not included in the computation,
all DFs which would be streamed from gas cells need
to be reconstructed for the interface cells. This can
be achieved by recalculating the equilibrium DFs
using the velocity of the interface cell (the gas is as-
sumed to have the same velocity as the fluid close
to the interface) and the gas pressure which is de-
termined by its initial value and subsequent volume
changes.

A high gas density results in a pressure force at
the fluid interface, pushing the fluid away, while a
lower pressure applies a force towards the gas phase.
This reconstruction step ensures that all DFs are
known for interface cells. Therefore, these cells can
be treated in the usual way during the collision step
as described in Sec. 2.

Once interface cells become completely filled or
empty — indicated by a normalized mass of zero or
one, respectively — their type has to be adapted ac-
cordingly. This can also cause neighboring fluid or
gas cells to be changed to interface cells, since the
layer of interface cells has to be entirely closed. Oth-
erwise neighboring gas and fluid cells would suffer
from a loss of mass when DF's copied to the gas cell
would not be included in the simulation anymore.

During the reconstruction step the surface tension
can also be included by modifying the gas pressure
according to the interface curvature, which is calcu-
lated from the geometry generated with a modified
marching cubes algorithm [16]. This algorithm is
often used to visualize isosurfaces from scalar fields,
and generates a closed triangulated surface for a
given isolevel. The points generated for the triangu-
lation can be used to determine the curvature along
two coordinate axis planes (chosen according to the
approximated surface normal).

In Fig. 7 the simulation of a problem similar to
foam formation is shown. Six bubbles with surface
tension are rising in a container filled with fluid.
Coalescence can be observed when larger bubbles
below touch smaller ones.

Due to the geometrical nature of the algorithm,
however, the curvature calculation can become inac-
curate for very small curvatures resulting in unphys-



Figure 7: Six bubbles rising in a container filled with fluid due to a gravitational force

ical forces at the surface. To overcome the inaccura-
cies we are currently including the level set method
[17] in our implementation. It treats the fluid sur-
face as an implicit function, simplifying normal and
curvature calculations as the level set values are also
defined in a region around the interface. Still, more
work has to be done to correctly track the interface.

4 Performance Evaluation

In the following sections we will use GFlop/s and
million lattice site updates per second (MLup/s) as
units for performance measurements. All presented
codes have been specially tuned for their target ar-
chitectures.

4.1 Nanotechnology code (NanoLBM)

Description of the Hitachi SR8000 architecture

Unlike many other supercomputers, the Hitachi
SR8000 is not a classical vector computer, although
it inherits some of the typical vector processing fea-
tures. Its RISC CPUs [18], which are enhanced
IBM PowerPC processors running at 375 MHz and
a theoretical peak performance of 1.5 GFlop/s, are

grouped in so-called nodes. Each node consists of
nine CPUs of which eight can be used in appli-
cation codes. Among other minor tasks the re-
maining processor handles I/O operations. These
nine CPUs can access the local node memory of 8
or 16 GByte with 32 GByte/s. The nodes are con-
nected with a 3D crossbar providing a network band-
width of 2GByte/s in full duplex mode [4]. The
performance evaluation runs were performed on the
Hitachi SR8000 at the Leibniz Rechenzentrum in
Munich. This machine has 168 nodes and delivers
a peak performance of 2.0 TFlop/s. It is placed at
rank 127 in the TOP500 list of June 2004.

A major difference between this architecture and
a normal RISC-based supercomputer is the exten-
sion to the CPU’s instruction set. One important
enhancement is the increase of the floating point
registers to 160 which can be put to good use es-
pecially in scientific codes. Further extensions are
special prefetch and preload instructions which both
retrieve data from main memory and store it in the
cache or in a floating point register, respectively.
These instructions are issued by the compiler at
appropriate points in the code to hide memory la-
tency. Therefore, the compiler needs to know the
memory access pattern of the code during compila-



tion. If the code does not allow for such an auto-
matic memory access analysis, the application per-
formance degrades drastically. In this sense, these
RISC CPUs behave similar to vector CPUs which
also rely on a simple and predictable data flow in
the application.

The prefetch/preload mechanisms in combination
with the extensive software pipelining done by the
compiler are called Pseudo Vector Processing (PVP)
as they are able to provide an uninterrupted stream
of data from main memory to the processor circum-
venting the penalties of memory latency.

For parallelization issues several different soft-
ware libraries are provided by Hitachi. If treated
as MPP (Massively Parallel Processing/Processors)
both intra- and inter-node communication can be
handled with the standard Message Passing Inter-
face (MPI). For intra-node communication there
are two alternatives which exploit the benefits of
the shared memory on a node more efficiently:
the standardized OpenMP interface version 1.0
(see http://www.openmp.org/), and the proprie-
tary COMPAS (Cooperative MicroProcessors in a
single Address Space) which allows for easy thread
parallelization of appropriate loops and sections.

In the following paragraphs we will describe our
efforts to adapt the LBM kernel to these special re-
quirements. Although the code implements a 3D
model of the LBM with 19 DFs per cell, we will
restrict the description and explanations to the 2D
case with only 9 DFs for simplicity reasons. The
extension to 3D is straight forward.

Description of the SGI Altix architecture

The SGI Altix architecture consists of shared mem-
ory ccNUMA systems with Intel Itanium2 CPUs.
Our benchmarks were carried out on machines with
28 CPUs running at 1.3 GHz with an L3-cache of
3 MByte. Each processor has a peak performance of
5.2 GFlop/s. Four CPUs are grouped to a compute
brick which in turn are connected by an SGI NU-
MALink3 interconnect. The configuration of each
compute brick is depicted in Fig: 8. Each pair of
CPUs shares a bandwidth of 6.4 GByte/s to local
memory, while the bidirectional bandwidth between
nodes amounts to only 1.6 GByte/s.

Memory layout and data access

The code optimizations presented here were applied
to the nanotechnology code (NanoLBM) written in
ANSI C. As explained in Sec. 2 the LBM is based on
an equidistant Cartesian grid of cells each compris-
ing a set of DFs. For reasons of simple and effective
parallelization, we have chosen the memory layout

double grid[Y] [X] [N]

10.2 GB/s
_— ~__

2x3.2 GB/s

Ttanium?2 Itanium?2

\ /
2x1.6 GB/s

Figure 8: Schematic view of a compute brick of an SGI
Altix

in C notation (X and Y denote the dimension of the
domain; N is the number of DFs per cell), i.e., for
each cell the N DF's are located in memory contigu-
ously. To simplify the data access two complete
grids are allocated. One serves as the source of all
read accesses, the other one is used to store the new
values. After a complete sweep over the grid, which
corresponds to one time step, the two grids swap
their roles.

The two basic LBM procedures which have to be
executed in each time step (stream and collide) can
be fused to a single block in order to decrease mem-
ory access. A choice has to be made about the or-
dering of the two involved actions, which has only
a negligible influence on the computational results,
but can lead to a significant difference in perfor-
mance.

The stream/collide and the collide/stream version
(see Fig. 2) both have in common that nine DFs
of the source grid have to be loaded from memory
in order to compute the new values in the collision
step. Afterwards the set of nine new values has to
be stored again to the destination grid in both cases.

However, there is a difference in the access pattern
for reading and storing the values for both versions.
Due to the chosen memory layout, the read data
is located contiguously in the source grid for the
collide/stream case, whereas it is scattered for the
stream /collide version (vice versa for writing). On
most architectures a contiguous data access is faster
than a scattered one.

To perform the collision operations the reading of
the values has to be completed. On the other hand,
the successive cell updates do not depend on the
data in the destination grid. Therefore the storing
of the new values does not have to be completed be-



Figure 9: The upper part of the figure shows a sim-
ulation domain divided horizontally in two subdomains
for parallelization. Due to the special stencil of the col-
lide/stream operator (see Fig. 2) an overlap of two rows
is necessary. The lower figure shows in detail the inter-
face region of both subdomains (shifted left and right
for easier depiction). CPU 1 sends the uppermost com-
pletely updated row to CPU 2 and CPU 2 sends the
lowermost completely updated row to CPU 1

fore starting work on the next cell. The C compiler
on the Hitachi SR8000 is able to exploit this fact by
applying PVP and produces code with better perfor-
mance for the collide/stream case (see Fig. 10). The

stream/collide version is about four times slower due
to the lack of PVP.

Parallelization technique

Because of the high locality of the collide/stream
operation, domain decomposition is very effective
and widely used for LBM codes. Using a separate
source and destination grid allows for optimizations
like OpenMP or COMPAS intra-node parallelization
for which independence of the sequence of cell up-
dates is essential. In the presented code the intra-
node parallelization with 8 CPUs per node is done
with COMPAS. For inter-node communication we
use MPI.

In the collide/stream version, the non-local write
stencil makes it necessary to introduce an overlap
of one row of cells at the interface of two adjacent
subdomains (see Fig. 9). Each cell in both domains
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Figure 10: Comparison of the performance for different
domain sizes on the Hitachi SR8000 (NanoLBM). The
performance was measured in MLup/s. For our imple-
mentation a lattice site update corresponds to approxi-
mately 209 floating-point operations

is updated by the collide/stream operator, even if
some of the values are overwritten during communi-
cation afterwards. This is required to obtain com-
pletely updated rows at the interface which are then
sent to neighboring domains. In total the number
of cells is increased by a factor of

2N — 1)

1+

in the 3D case with N as the number of domains, a
grid geometry of sx s X as, and for domain interfaces
in the zy-plane.

For the largest domain handled by NanoLBM
with a grid size of 646 x 646 x2584 cells and 64 subdo-
mains this results in an increase of about 4.9 % addi-
tional cells that have to be updated in each step. To
minimize this drawback of the collide/stream ver-
sion the simulation domain should be divided into a
minimal number of subdomains whose lower bound
is determined for most architectures by the available
memory.

The stream/collide version does not share the ne-
cessity of overlapping interface cells due to the dif-
ference in its operator stencil which explains its good
speed-up behavior shown in Fig. 10.

A major advantage of the chosen memory layout
for the grid are the contiguous data blocks for en-
tire rows. Therefore rearranging data before send-
ing and after receiving messages is unnecessary. In
many other MPI-parallel applications this copy op-
erations consume a considerable amount of proces-
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sor time which could be spent for real computations
otherwise.

Another feature of the presented code is its de-
sign which allows for overlapping of communication
with computation in order to hide communication
latencies if the architecture supports this. Instead
of performing the collide/stream operator for the
whole subdomain, the interface regions are updated
first. After this step, the sending of the interface
rows is initialized by MPI calls. Without waiting
for their completion the rest of the subdomain is
updated with the collide/stream operation. Before
proceeding to the next time step, the corresponding
receive operations have to be checked for comple-
tion. This gives the message handling subsystem of
MPI more time to complete the pending communi-
cation calls.

Results for the Hitachi SR8000 and the SGI Altix
As can be seen in Fig. 10 the NanoLBM exhibits a
good speed-up behavior for a small number of Hi-
tachi SR8000 nodes which is close to linear scal-
ing. When switching to a larger domain for the
same number of nodes the performance increases be-
cause of the diminishing influence of the overlapping
boundary interfaces which have been discussed pre-
viously. All performance results discussed in this
section have been obtained with the collide/stream
version.

Figure 11 shows the scale-up behavior for up to 64
Hitachi SR8000 nodes which amounts to 512 CPUs.
For the largest simulation a total number of 1.08-10°
cells have been used which require 370 GByte of
memory in total. The effects of communication
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Figure 12: Scale-up and speed-up measurements on
the SGI Altix architecture (NanoLBM). Depending on
the process placement, different scaling behavior can be
observed

latency start to degrade the performance for such
large-scale simulations as almost 64 MByte have to
be sent to and received from each adjacent subdo-
main in every time step. Nevertheless, the code still
achieves an efficiency of 75% as compared to the
single node performance.

For comparison, Fig. 12 shows the scale-up and
speed-up behavior on the SGI Altix systems located
at the Computing Center in Erlangen?.

Within a compute brick a pair of two Itanium2
processors share one memory bus, which leads to
an obvious degradation in performance when using
both CPUs at the same time in a parallel run. Pro-
cess placement can be handled accordingly. Hence,
it is possible to obtain two different curves for speed-
up and scale-up: one by continuously using all avail-
able CPUs in a compute brick and another by “in-
telligent” process placement and using only half of
the available CPUs. However, on production sys-
tems such a process placement is often not possible
so that the lower curve can be regarded as the “real”
speed-up curve for the considered code.

A comparison of single CPU performance on the
SGI Altix with the performance of one Hitachi
SR8000 node reveals that 5—6 Itanium2 processors
are necessary to meet the performance of one Hi-
tachi SR8000 node.

4.2 Turbulence code (BEST)

While the NanoLLBM code is written in C, the tur-
bulence application called BEST (Boltzmann Equa-

2http://www.rrze.uni-erlangen.de
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Figure 13: Scale-up performance on a NEC SX6
(BEST)

tion Solver Tool) which is discussed in this section
has been implemented using FORTRAN.

Description of the NEC SX6 architecture
Whereas Hitachi tried to merge their S-3000 vector
architecture and the MPP SR2201 into a new kind
of high performance computer labeled SR8000, the
Japanese vendor NEC embarks on the strategy of
continuously improving the well established vector
processing paradigm. The latest implementation of
this paradigm, the NEC SX6, is based on a 565 MHz
vector CPU with a peak performance of 9.2 GFlop/s
and a memory bandwidth of 36 GByte/s per CPU.
The vector unit consists of vector registers and 8
sets of vector pipelines for multiplication, add/shift,
division, logical, mask, and load/store operations.
Together with the vector unit a scalar unit is in-
tegrated on a single chip. This compact body im-
proves the price performance of the architecture sig-
nificantly. 8 CPUs share 64 GByte of memory with
an aggregated memory bandwidth of 288 GByte/s.
The nodes are connected by a 8 GByte/s crossbar
switch (IXS). For our performance measurements we
use the six node NEC SX6 with 48 vector CPUs in-
stalled at the High Performance Computing Center
Stuttgart (HLRS).

Code optimizations

In oder to maximize the length of the loop for effi-
cient vectorization the three spatial dimensions are
collapsed into one in the BEST code. The mem-
ory layout is the same as for the NanoLBM code.
To avoid data dependencies the DF array is also al-
located twice. This simplifies the vectorization of
the streaming step which is done immediately after
the collision step. The collision step itself causes
no problems as it is completely local. Within a
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Figure 14: Scale-up performance on the Hi-

tachi SR8000 (BEST) with 1283 Cells/CPU  and
MPI/OpenMP parallelization

shared memory node, the collision/streaming loop
can be parallelized using OpenMP or equivalent
vendor proprietary compiler directives. The inter-
node parallelization implements domain decomposi-
tion and MPI for message passing. Instead of this
hybrid approach, the architecture can be treated as
an MPP using MPI also within each node.

In contrast to the NanoLBM implementation
computation and communication are completely
separated by introducing additional communication
layers around the computational domain. Due to
varying needs of the applications the domain decom-
position is feasible in all three spatial directions.

Results for the NEC SX6 and the Hitachi
SR8000

The resulting performance can be seen in Fig. 13
for a NEC SX6 with six nodes. In the plots three
benchmarks are plotted. The first consists of a fixed
grid size of 256 x 1282 grid points. The performance
is measured for up to 48 CPUs. On one CPU the
LBM reaches almost 70 % of the peak performance.
This value decreases to 3 GFlop/s per CPU on the
entire machine for this fixed grid case.

For the second and the third benchmark the grid
size is scaled with the number of CPUs. One CPU
deals with 1283 grid points. In this case the ratio
of GFlop/s per CPU remains nearly constant re-
gardless of the number of CPUs chosen. It can be
seen that the pure MPI mode is slightly better than
the hybrid /master-only mode for which OpenMP is
used inside one node. In the figure the total values
for MLup/s and GFlop/s are plotted. Additionally,
the linear speed-up of the actual one CPU perfor-



mance is shown.

For comparison Fig. 14 shows the scale-up perfor-
mance on the Hitachi SR8000 for the BEST code. It
is nearly identical to performance of the NanoLBM
code.

5 Scalability and cost
effectiveness of COTS clusters

Finally, we discuss the scalability of the LBM appli-
cation BEST on COTS clusters and comment on the
usability and price/performance ratios in the con-
text of the presented LBM applications.

We have chosen two flavors of COTS clusters:
First, a GBit/Xeon cluster of 86 dual proces-
sor nodes (Intel Xeon 2.66 GHz; 4.3 GByte mem-
ory bandwidth per node) connected via a Cisco
4503 GBit Ethernet switch and running Debian
GNU/Linux 3.0. All benchmark runs were com-
piled using the Intel Compiler version 7.1. Sec-
ond, a Myrinet/Opteron cluster of 125 dual pro-
cessor nodes (AMD Opteron 2.0 GHz; 5.4 GByte
memory bandwidth per processor) connected via a
Myrinet2000 network and running SuSE SLES 8§
Linux. All benchmark runs on this system were
compiled using the 64-bit PGI compiler version 5.0.

An important difference between the Intel and
AMD design is the memory subsystem. While In-
tel still promotes bus based architectures where two
or four processors share one path to the main mem-
ory, AMD uses a separate memory interface for each
CPU providing full bandwidth for each CPU within
a shared memory node.

Of course, the AMD design is favorable for the
LBM programs concerning the scalability within the
used dual processor nodes. In Tab. 1 we find a nearly
linear speed-up within the AMD node, reducing the
single processor performance gap substantially com-
pared to the Itanium2 processor, if both processors
on the dual nodes are used.

Architecture H 1 CPU ‘ 2 CPUs
Intel Xeon 1.9 3.0
AMD Opteron 2.8 5.7
Intel Itanium?2 5.0 7.2

Table 1: Speed-up performance within an 2-way node
given in MLup/s (BEST)

Since the Opteron node provides a higher aggre-
gate bandwidth (10.8 GByte/s) — which is the crit-
ical resource for LBM applications — than the Ita-
nium2 systems (6.4 GByte/s) there should be some
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Figure 15: Scalability tests for modern cluster config-
urations (BEST). The domain size is 256 x 129 x 128 for
speed-up and 128> per processor for scale-up tests. For
reference the corresponding results of a shared memory
system (SGI Altix) and the single processor performance
of the NEC SX6 are given

room for improvement by further optimizations or
advances in compiler technology.

When discussing the impact of the cluster inter-
connects on the LBM performance we must distin-
guish between speed-up and scale-up performance:
In the case of scale-up we find an almost linear in-
crease in performance with the number of compute
nodes involved. If we scale in units of dual nodes
(which are the basic building blocks of our clusters)
we find parallel efficiencies on 64 processors beyond
80 % both for GBit and Myrinet. As long as the
network capacity is scaled up with the cluster size,
e.g., with a fat-tree topology, we do not expect a
significant breakdown for the scale-up case.

However, for the speed-up problem we recover the
basic problems of cluster systems. With increasing
processor count, the computational effort per pro-
cessor decreases and network bandwidth and latency
can impose severe limits on the achievable perfor-
mance for a fixed problem to be solved. For exam-
ple, on the GBit cluster reasonable scaling is not
possible beyond 16 processors. Moreover, the clus-
ter will never achieve the performance level of a sin-
gle NEC vector processor for the problem size under
consideration. Due to improved latencies and band-
width, the Myrinet cluster scales significantly bet-
ter but still requires roughly 24 processors to match
the NEC single processor performance. The NUMA-
Link3 interconnect of the SGI Altix provides a very
high level of interconnect performance (roughly 5
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times higher than the MPI bandwidth and 1/5 of its
latency compared to Myrinet2000) and thus scales
very well even for the speed-up case with a parallel
efficiency of roughly 80 % on 64 processors (if using
the two processor performance as the base and thus
ignoring the bandwidth problem within the 2-way
nodes as described in Tab. 1).

One reason for the success of COTS clusters is,
that they provide immense aggregate peak perfor-
mance and thus also high LINPACK numbers at a
very moderate price level. However there is a con-
troversial debate whether the price performance ra-
tio of COTS clusters is still optimal if application
performance is the metric. Using the performance
data of Fig. 15 and price estimations based on pub-
lic procurements of HPC systems® we present the
price/performance comparison in Fig. 16.

To achieve a high application performance, ar-
chitectures like dual Xeon or dual Opteron clus-
ters become expensive compared to vector CPUs or
the SGI Altix when the problem size is kept fixed.
The step at the beginning of the SGI Altix curve
shows once more the bandwidth problem already
mentioned. In case the system size per CPU is con-
stant, clusters of commodity hardware show a good
price to performance ratio for this kind of code.

Sestimated prices per processor: GBit/Xeon: 2000 USD;
Myrinet/Opteron: 3000 USD; Altix/Itanium2: 11000 USD;
NEC: 60000 USD
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6 Conclusions

We have presented three large-scale applications
which are based on the increasingly popular LBM.
We explained in detail the optimization techniques
which are required for the efficient use of parallel
supercomputers. We were able to prove that these
optimizations lead to excellent scale-up and speed-
up behavior up to 512 processors on the Hitachi
SR8000.

The results also demonstrate that only dedicated
supercomputers featuring network and memory con-
nections with extremely high bandwidth and low la-
tency are suitable for these kinds of codes with large
data sets. In turn, it is difficult or practically impos-
sible to achieve the same performance and speed-up
behavior even with several hundreds of processors
even on architectures like the SGI Altix.

During the work on the application programs we
experienced great differences in the quality of the
code generated by different compilers. As a general
rule it can be said that FORTRAN compilers are
much more successful in producing highly efficient
code compared to compilers for C or C++. Unfor-
tunately, this is particularly true for compilers on
most supercomputers. Nevertheless, it is possible to
come close to the performance of FORTRAN codes
as our C implementation NanoLBM has show.

A typical ccNUMA machine such as the SGI
Altix performs reasonably well so that about five
Itanium?2 processors meet the performance of one
Hitachi SR8000 node. However, the performance
degradation due to insufficient memory bandwidth
(one memory bus for two CPUs) reveals the weak
point in the design of almost all SMP machines
when considering memory bound applications like
the LBM.

Requiring a sustained performance of 1TFlop/s
and extrapolating the presented performance num-
bers, 160 nodes of the NEC SX6, 320 nodes of the
Hitachi SR8000 or roughly 3500 Itanium?2 processors
are necessary. Architectures like the Hitachi SR8000
or classical vector machines like the NEC SX6 or
Cray X1 provide for high scalability up to several
hundreds of processors and are therefore most suit-
able for large-scale parallel LBM applications. It
is worth mentioning that the SR8000 was originally
installed in 2000 and is still able to compete with
current supercomputing architectures.
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